Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm tính toán với số thập phân

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tính toán với số thập phân, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Cộng, trừ hai số thập phân. Để thực hiện các phép tính cộng trừ các số thập phân, ta áp dụng các quy tắc dấu như khi thực hiện các phép tính cộng trừ số nguyên. – Muốn cộng hai số thập phân âm ta cộng hai số đối của chúng rồi thêm dấu trừ đằng trước kết quả. – Muốn cộng hai số thập phân trái dấu, ta làm như sau: + Nếu số dương lớn hơn hay bằng số đối của số âm thì ta lấy số dương trừ đi số đối của số âm a b b a với 0 a b. + Nếu số dương nhỏ hơn số đối của số âm thì ta lấy sốđối của số âm trừ đi số dương rồi đặt dấu trừ trước kết quả. – Muốn số thập phân a cho số thập phân b ta cộng a với số đối của b. Chú ý: – Tổng của hai số thập phân cùng dấu luôn cùng dấu với hai số thập phân đó. – Khi cộng hai số thập phân trái dấu: + Nếu số dương lớn hơn số đối của số âm thì ta có tổng dương. + Nếu số dương nhỏ hơn số âm thì ta có tổng âm. 2. Nhân, chia hai số thập phân. Muốn nhân hai số thập phân dương có có nhiều chữ số thập phân ta làm như sau: – Bỏ dấu phẩy rồi nhân như hai số tự nhiên. – Đếm xem trong phần thập phân ở cả hai thừa số có tất cả bao nhiêu chữ số rồi dùng dấu phẩy tách ở tích ra bấy nhiêu chữ số từ phải sang trái. – Nhân hai số cùng dấu a b a b với a b 0. – Nhân hai số khác dấu a b a b a b với a b 0. Muốn chia hai số thập phân dương có có nhiều chữ số thập phân ta làm như sau: – Đếm xem có bao nhiêu chữ số ở phần thập phân số thì chuyển dấu phẩy ở số bị chia ở số bị chia sang phải bấy nhiêu chữ số. Nếu thiếu bao nhiêu chữ số thì ta thêm bấy nhiêu chữ số 0. – Bỏ dấu phẩy ở số chia rồi thực hiện phép chia như chia số thập phân cho số tự nhiên. – Chia hai số cùng dấu: a b a b với a b 0. – Nhân hai số khác dấu: a b a b a b với a b 0. 3. Các dạng toán thường gặp. Dạng 1: Thực hiện phép tính. Phương pháp: Sử dụng quy tắc các phép tính để tính. Dạng 2: Tìm x. Phương pháp: Sử dụng quy tắc chuyển vế, tính chât của đẳng thức để tìm. B. BÀI TẬP TRẮC NGHIỆM DẠNG 1: THỰC HIỆN PHÉP TÍNH. DẠNG 2: TÌM X.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề đoạn thẳng và độ dài đoạn thẳng
Tài liệu gồm 18 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề đoạn thẳng và độ dài đoạn thẳng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được khái niệm đoạn thẳng, độ dài đoạn thẳng. Kĩ năng: + Đếm được số đoạn thẳng tạo thành từ các điểm cho trước. + Chỉ ra được tính thẳng hàng và điểm nằm giữa hai điểm. + Tính được độ dài đoạn thẳng sử dụng công thức cộng độ dài đoạn thẳng. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Đếm số đoạn thẳng tạo thành từ các điểm cho trước. Dạng 2 : Xét tính thẳng hàng và điểm nằm giữa hai điểm còn lại. Điểm nằm giữa hai điểm: + Nếu OA và OB là hai tia đối nhau thì O nằm giữa A và B. + Nếu OA và OB là hai tia trùng nhau và OA OB thì A nằm giữa O và B. + Nếu MA MB AB thì M nằm giữa A và B và ngược lại. + Điểm M thuộc đoạn thẳng AB thì M nằm giữa A và B. Dạng 3 : Độ dài đoạn thẳng. Tính độ dài đoạn thẳng: Khi điểm M nằm giữa hai điểm A và B thì MA MB AB và ngược lại. Vẽ đoạn thẳng cho biết độ dài: + Vẽ đoạn thẳng trên tia: Trên tia Ox bao giờ cũng vẽ được một và chỉ một điểm M sao cho OM a (đơn vị độ dài). + Vẽ hai đoạn thẳng trên tia: Trên tia Ox vẽ hai đoạn thẳng OM a ON b. Nếu 0 a b thì điểm M nằm giữa hai điểm O và N.
Chuyên đề tia
Tài liệu gồm 12 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tia, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được tia, hai tia đối nhau, hai tia trùng nhau. Kĩ năng: + Vẽ được các tia thỏa mãn điều kiện cho trước. + Dựa vào khái niệm tia, xác định được điểm nằm giữa hai điểm còn lại. I. LÍ THUYẾT TRỌNG TÂM 1. Tia. Định nghĩa: Hình gồm điểm O và một phần đường thẳng bị chia ra bởi điểm O được gọi là một tia gốc O. 2. Hai tia đối nhau. Định nghĩa: Hai tia chung gốc Ox và Oy tạo thành đường thẳng xy được gọi là hai tia đối nhau. Nhận xét: Mỗi điểm trên đường thẳng là gốc chung của hai tia đối nhau. 3. Hai tia trùng nhau. II. CÁC DẠNG BÀI TẬP Dạng 1 : Nhận biết tia, hai tia đối nhau, hai tia trùng nhau. Bài toán 1. Nhận biết tia. + Bước 1. Sử dụng khái niệm một tia để xác định các tia có trong hình. Xác định điểm gốc của tia và phần đường thẳng được chia bởi gốc. + Bước 2. Sử dụng một trong các cách để gọi tên tia. Bài toán 2. Xác định tia đối. + Bước 1. Xác định các điểm trên hình là gốc chung của hai tia đối. + Bước 2. Xác định các tia có chung gốc và tạo thành một đường thẳng. Liệt kê tên các cặp tia đối nhau. Bài toán 3. Xác định tia trùng nhau. + Bước 1. Sử dụng khái niệm về hai tia trùng nhau để xác định trên hình vẽ. + Bước 2. Kể tên các cặp tia trùng nhau. Dạng 2 : Vẽ các tia theo điều kiện cho trước. Dạng 3 : Xác định điểm nằm giữa hai điểm khác.
Chuyên đề đường thẳng đi qua hai điểm
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề đường thẳng đi qua hai điểm, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được tiên đề về đường thẳng đi qua hai điểm phân biệt. + Nhận biết được khái niệm hai đường thẳng cắt nhau, song song. Kĩ năng: + Vẽ được đường thẳng đi qua hai điểm. + Đếm được số đường thẳng trên hình vẽ cho trước. I. LÍ THUYẾT TRỌNG TÂM 1. Vẽ và đặt tên đường thẳng. Vẽ đường thẳng: + Vẽ đường thẳng đi qua hai điểm A và B. + Đặt cạnh thước đi qua hai điểm A và B. + Dùng bút chì vạch theo cạnh thước. Có một đường thẳng và chỉ một đường thẳng đi qua hai điểm A và B. Tên đường thẳng: Một đường thẳng có thể được đặt tên bằng: + Một chữ cái in thường. + Tên hai điểm thuộc đường thẳng đó. + Hai chữ cái in thường. 2. Đường thẳng trùng nhau, cắt nhau, song song. Hai đường trùng nhau: Hai đường thẳng AB và AC trùng nhau. Hai đường thẳng cắt nhau: Hai đường thẳng cắt nhau là hai đường thẳng có duy nhất một điểm chung. Hai đường thẳng AB và AC cắt nhau tại A. A là giao điểm của hai đường thẳng đó. Hai đường thẳng song song: Hai đường thẳng song song là hai đường thẳng không có điểm chung. Hai đường thẳng a và b không có điểm chung nào (dù có kéo dài mãi mãi về hai phía). Hai đường thẳng a và b song song với nhau. II. CÁC DẠNG BÀI TẬP Dạng 1 : Đếm số đường thẳng. Có một và chỉ một đường thẳng đi qua hai điểm phân biệt. Hai đường thẳng không trùng nhau được gọi là hai đường thẳng phân biệt. Dạng 2 : Giao điểm của hai đường thẳng cắt nhau. Giao điểm của hai đường thẳng cắt nhau là điểm chung của hai đường thẳng ấy.
Chuyên đề ba điểm thẳng hàng
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề ba điểm thẳng hàng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được ba điểm thẳng hàng, ba điểm không thẳng hàng. + Nhận biết được khái niệm điểm nằm giữa hai điểm. Kĩ năng: + Chỉ ra được điểm nằm giữa hai điểm còn lại. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Nhận biết ba điểm thẳng hàng hay không thẳng hàng. Để nhận biết ba điểm có thẳng hàng hay không, ta thường làm như sau: – Bước 1. Vẽ một đường thẳng đi qua hai trong ba điểm. – Bước 2: + Nếu điểm còn lại nằm trên đường thẳng vừa vẽ thì ba điểm thẳng hàng. + Nếu điểm còn lại không nằm trên đường thẳng vừa vẽ thì ba điểm không thẳng hàng. Dạng 2 : Xác định vị trí giữa ba điểm thẳng hàng. Ba điểm M, N, P thẳng hàng, trong đó: + Điểm M và điểm N nằm cùng phía đối với điểm P. + Điểm N và điểm P nằm cùng phía đối với điểm M. + Điểm M và điểm P nằm khác phía đối với điểm N. + Điểm N nằm giữa hai điểm M và P.