Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kỳ 2 Toán 10 chuyên năm 2023 - 2024 trường chuyên Hùng Vương - Phú Thọ

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 2 môn Toán 10 (chương trình chuyên) năm học 2023 – 2024 trường THPT chuyên Hùng Vương, tỉnh Phú Thọ. Đề thi gồm 04 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn; Tự luận. Kỳ thi được diễn ra vào ngày 24 tháng 04 năm 2024. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối kỳ 2 Toán 10 chuyên năm 2023 – 2024 trường chuyên Hùng Vương – Phú Thọ : + Hai trạm phát tín hiệu vô tuyến đặt tại hai vị trí A B cách nhau 200 km. Tại cùng một thời điểm, hai trạm cùng phát tín hiệu với vận tốc 292000 km s để hai tàu thủy đang ở hai vị trí C D, thu và đo độ lệch thời gian. Với tàu thủy tại vị trí C, tín hiệu từ A đến sớm hơn tín hiệu từ B là 0,0005s. Với tàu thủy tại vị trí D, tín hiệu từ B đến sớm hơn tín hiệu từ A là 0,0005s. Tính hiệu khoảng cách từ tàu ở vị trí D đến hai trạm phát tín hiệu A và B từ đó tính khoảng cách từ tàu ở vị trí D đến trạm tín hiệu tại A biết hai tàu cách nhau 300km và CD song song với AB. + Đội thanh niên xung kích của một trường trung học phổ thông có 12 học sinh trong đó có 9 học sinh nam và 3 học sinh nữ. Đoàn trường cần chọn một nhóm 5 học sinh đi làm nhiệm vụ sao cho phải có 1 đội trưởng nam, 1 đội phó nam và có ít nhất 1 nữ. Hỏi có bao nhiêu cách chọn? + Một cánh cổng hình bán nguyệt rộng 8, 4 m và cao 4,2 m. Mặt đường dưới cổng được chia thành hai làn đều nhau cho xe ra vào. Một chiếc xe tải rộng 2,8 m không chở hàng nếu đi đúng làn đường quy định và có thể đi qua cổng mà không làm hư cổng thì chiều cao của xe không vượt quá bao nhiêu mét (làm tròn đến hàng phần trăm)?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường chuyên Lê Hồng Phong - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Cần Thạnh - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Cần Thạnh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Cần Thạnh – TP HCM : + Tìm m để phương trình 2 m x m x m 1 3 1 0 có hai nghiệm phân biệt. + Trong mặt phẳng Oxy, viết phương trình chính tắc của elip (E), biết (E) có độ dài trục lớn bằng 16 và tiêu điểm F1(3;0). + Trong mặt phẳng Oxy, cho hai điểm A, B. Viết phương trình đường tròn có đường kính là AB.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bùi Thị Xuân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có các đỉnh. a) Viết phương trình đường thẳng d đi qua trọng tâm G của tam giác ABC và d song song với đường thẳng AB . b) Viết phương trình đường tròn ngoại tiếp tam giác ABC. + Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn. Viết phương trình tiếp tuyến của đường tròn biết rằng đường thẳng vuông góc với đường thẳng. + Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình chính tắc của elip E biết E đi qua điểm A và có độ dài trục nhỏ bằng tiêu cự.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bình Tân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bình Tân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bình Tân – TP HCM : + Trong mặt phẳng Oxy, cho tam giác ABC có A(1;2), B(5;2), C(1;−3). Viết phương trình đường cao AH của tam giác ABC. + Trong mặt phẳng Oxy, viết phương trình đường tròn (C) có đường kính MN với M(−3;2); N(1;−2). + Trong mặt phẳng tọa độ Oxy, cho elip 2 2 1 16 9 x y E. Xác định tọa độ các đỉnh, tiêu điểm; độ dài trục lớn; độ dài trục nhỏ và tiêu cự của Elip.