Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập các hình khối trong thực tiễn Toán 8 Chân Trời Sáng Tạo

Tài liệu gồm 34 trang, được tổng hợp bởi thầy giáo Nguyễn Bỉnh Khôi, bao gồm phân dạng và bài tập chủ đề các hình khối trong thực tiễn trong chương trình môn Toán 8 sách Chân Trời Sáng Tạo. Chương 2 . HÌNH HỌC TRỰC QUAN: CÁC HÌNH KHỐI TRONG THỰC TIỄN 275. Bài 1 . HÌNH CHÓP TAM GIÁC ĐỀU – HÌNH CHÓP TỨ GIÁC ĐỀU 275. A Trọng tâm kiến thức 275. 1. Hình chóp tam giác đều – hình chóp tứ giác đều 275. 2. Tạo lập hình chóp tam giác đều, hình chóp tứ giác đều 275. B Các dạng bài tập 277. + Dạng 1. Xác định các yếu tố trong hình chóp đều 277. + Dạng 2. Ghép hình 279. C Bài tập vận dụng 280. Bài 2 . DIỆN TÍCH XUNG QUANH VÀ THỂ TÍCH CỦA HÌNH CHÓP TAM GIÁC ĐỀU, HÌNH CHÓP TỨ GIÁC ĐỀU 285. A Trọng tâm kiến thức 285. 1. Diện tích xung quanh của hình chóp tam giác đều và hình chóp tứ giác đều 285. 2. Thể tích của hình chóp tam giác đều và hình chóp tứ giác đều 285. B Các dạng bài tập 285. + Dạng 1. Diện tích xung quanh hình chóp tam giác đều 285. + Dạng 2. Diện tích xung quanh hình chóp tứ giác đều 287. + Dạng 3. Thể tích hình chóp tam giác đều 288. + Dạng 4. Thể tích hình chóp tứ giác đều 289. + Dạng 5. Vận dụng 290. C Bài tập vận dụng 292. ÔN TẬP CHƯƠNG II 300. A Bài tập trắc nghiệm 300. B Bài tập tự luận 302.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phân tích đa thức thành nhân tử bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 66 trang, được biên soạn bởi thầy giáo Trần Đình Hoàng, hướng dẫn phương pháp giải các dạng toán chuyên đề phân tích đa thức thành nhân tử bồi dưỡng học sinh giỏi Toán 8. 1. Phương pháp đặt nhân tử chung 2. 2. Phương pháp dùng hằng đẳng thức 2. 3. Phương pháp nhóm hạng tử 4. 4. Phối hợp nhiều phương pháp 6. 5. Phương pháp tách hạng tử 11. + Dạng 1. Phân tích đa thức thành nhân tử của đa thức bậc hai 11. + Dạng 2. Phân tích đa thức thành nhân tử của đa thức bậc ba 11. + Dạng 3. Phân tích đa thức thành nhân tử của đa thức bậc bốn 13. + Dạng 4. Phân tích đa thức thành nhân tử của đa thức bậc cao 15. 6. Phương pháp thêm bớt cùng một hạng tử 16. 7. Phương pháp đổi biến số (hay đặt ẩn phụ) 18. + Dạng 1. Đặt biến phụ (x2 + ax + m)(x2 + ax + n) + p 18. + Dạng 2. Đặt biến phụ dạng (x + a)(x + b(x + c)(x + d) + e 19. + Dạng 3. Đặt biến phụ dạng (x + a)4 + (x + b)4 + c 21. + Dạng 4. Đặt biến phụ dạng đẳng cấp 21. + Dạng 5. Đặt biến phụ dạng khác 22. 8. Phương pháp hệ số bất định 25. 9. Phương pháp tìm nghiệm của đa thức 30. 10. Phương pháp xét giá trị riêng 32.
Chuyên đề chia hết của đa thức bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 12 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề chia hết của đa thức bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Sử dụng định lý Bezout tìm số dư. Dạng 2. Tìm đa thức. Dạng 3. Tổng hợp.
Chuyên đề bất đẳng thức bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 47 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề bất đẳng thức bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Sử dụng định nghĩa: A > B ta xét hiệu A – B > 0, chú ý bất đẳng thức a2 >= 0. Dạng 2. Sử dụng bất đẳng thức phụ. Dạng 3. Bất đẳng thức Cosi và Schawrz. Dạng 4. Sắp sếp các biến và bất đẳng thức tam giác. Dạng 5. Tìm điểm rơi của bất đẳng thức Cosi.
Hướng dẫn ôn tập học kì 1 Toán 8 năm 2021 - 2022 trường THCS Thanh Am - Hà Nội
Tài liệu đề cương hướng dẫn ôn tập học kì 1 Toán 8 năm 2021 – 2022 trường THCS Thanh Am – Hà Nội gồm 11 trang. I. LÝ THUYẾT 1. Đại số: – Phép nhân và phép chia đa thức. – Các hằng đẳng thức đáng nhớ. – Các phương pháp phân tích đa thức thành nhân tử. – Cộng, trừ các phân thức đại số. 2. Hình học: – Định nghĩa, tính chất, dấu hiệu nhận biết của: hình thang, hình thang cân, hình bình hành, hình chữ nhật, hình thoi, hình vuông. – Đường trung bình của tam giác, hình thang. – Đối xứng trục, đối xứng tâm. II. CÂU HỎI TRẮC NGHIỆM THAM KHẢO