Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 2 năm 2022 - 2023 phòng GDĐT Quỳ Hợp - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán ôn tập thi tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quỳ Hợp, tỉnh Nghệ An. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2022 – 2023 phòng GD&ĐT Quỳ Hợp – Nghệ An : + Cho phương trình bậc hai ẩn x: x2 + 2mx + m2 – 1 = 0 (1) (với m là tham số). Tìm m để phương trình (1) có hai nghiệm x1 và x2 thỏa mãn. + Hưởng ứng Ngày sách và văn hóa đọc Việt Nam 21/4. Sáng ngày 20/4, Trung tâm văn hóa thể thao và truyền thông huyện phối hợp với Thư viện tỉnh và Trường THCS A tổ chức ngày hội đọc sách năm 2022 với chủ đề “Sách với cuộc sống”. Tại buổi lễ Thư viện tỉnh đã tặng trường THCS A 50 cuốn sách về kỹ năng sống và truyện về Bác Hồ kính yêu có tổng trị giá 5 triệu đồng. Biết mỗi cuốn sách kỹ năng sống có giá 120 nghìn đồng và mỗi cuốn truyện về Bác Hồ kính yêu có giá 70 nghìn đồng. Hỏi Thư viện tỉnh đã tặng cho trường THCS A bao nhiêu cuốn sách về kỹ năng sống và bao nhiêu cuốn truyện về Bác Hồ kính yêu? + Cho tam giác nhọn ABC nội tiếp đường tròn tâm O bán kính R. Các đường cao BD, CE của tam giác ABC cắt nhau tại H. Đường thẳng chứa tia phân giác của góc BHE cắt AB, AC lần lượt tại F, G. a. Chứng minh các tứ giác BCDE; AEHD nội tiếp đường tròn. b. Chứng minh: BH.BD + CH.CE = BC2. c. Đường tròn ngoại tiếp tam giác AFG cắt đường phân giác của góc BAC tại Q (Q khác A). Khi B, C cố định và A thay đổi trên cung lớn BC của đường tròn (O). Chứng minh rằng đường thẳng HQ luôn đi qua một điểm cố định.

Nguồn: toanmath.com

Đọc Sách

Bộ đề tham khảo môn Toán tuyển sinh 10 năm 2022 - 2023 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 bộ tài liệu tuyển tập đề tham khảo môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh (do Hội Đồng Bộ Môn Toán Thành Phố Hồ Chí Minh biên soạn). MỤC LỤC : Đề tham khảo tuyển sinh 10 Thành phố Thủ Đức – Đề số 1 3. Đề tham khảo tuyển sinh 10 Thành phố Thủ Đức – Đề số 2 5. Đề tham khảo tuyển sinh 10 Thành phố Thủ Đức – Đề số 3 7. Đề tham khảo tuyển sinh 10 Thành phố Thủ Đức – Đề số 4 9. Đề tham khảo tuyển sinh 10 Thành phố Thủ Đức – Đề số 5 11. Đề tham khảo tuyển sinh 10 Quận 1 – Đề số 1 13. Đề tham khảo tuyển sinh 10 Quận 1 – Đề số 2 15. Đề tham khảo tuyển sinh 10 Quận 1 – Đề số 3 17. Đề tham khảo tuyển sinh 10 Quận 3 – Đề số 1 19. Đề tham khảo tuyển sinh 10 Quận 3 – Đề số 2 21. Đề tham khảo tuyển sinh 10 Quận 3 – Đề số 3 23. Đề tham khảo tuyển sinh 10 Quận 4 – Đề số 1 25. Đề tham khảo tuyển sinh 10 Quận 4 – Đề số 2 27. Đề tham khảo tuyển sinh 10 Quận 4 – Đề số 3 29. Đề tham khảo tuyển sinh 10 Quận 5 – Đề số 1 31. Đề tham khảo tuyển sinh 10 Quận 5 – Đề số 2 33. Đề tham khảo tuyển sinh 10 Quận 5 – Đề số 3 35. Đề tham khảo tuyển sinh 10 Quận 6 – Đề số 1 36. Đề tham khảo tuyển sinh 10 Quận 6 – Đề số 2 38. Đề tham khảo tuyển sinh 10 Quận 6 – Đề số 3 40. Đề tham khảo tuyển sinh 10 Quận 7 – Đề số 1 42. Đề tham khảo tuyển sinh 10 Quận 7 – Đề số 2 44. Đề tham khảo tuyển sinh 10 Quận 7 – Đề số 3 46. Đề tham khảo tuyển sinh 10 Quận 8 – Đề số 1 48. Đề tham khảo tuyển sinh 10 Quận 8 – Đề số 2 50. Đề tham khảo tuyển sinh 10 Quận 8 – Đề số 3 52. Đề tham khảo tuyển sinh 10 Quận 10 – Đề số 1 54. Đề tham khảo tuyển sinh 10 Quận 10 – Đề số 2 56. Đề tham khảo tuyển sinh 10 Quận 10 – Đề số 3 58. Đề tham khảo tuyển sinh 10 Quận 11 – Đề số 1 60. Đề tham khảo tuyển sinh 10 Quận 11 – Đề số 2 62. Đề tham khảo tuyển sinh 10 Quận 11 – Đề số 3 64. Đề tham khảo tuyển sinh 10 Quận 12 – Đề số 1 66. Đề tham khảo tuyển sinh 10 Quận 12 – Đề số 2 68. Đề tham khảo tuyển sinh 10 Quận 12 – Đề số 3 70. Đề tham khảo tuyển sinh 10 Quận Bình Tân – Đề số 1 72. Đề tham khảo tuyển sinh 10 Quận Bình Tân – Đề số 2 75. Đề tham khảo tuyển sinh 10 Quận Bình Tân – Đề số 3 77. Đề tham khảo tuyển sinh 10 Quận Bình Thạnh – Đề số 1 79. Đề tham khảo tuyển sinh 10 Quận Bình Thạnh – Đề số 2 81. Đề tham khảo tuyển sinh 10 Quận Bình Thạnh – Đề số 3 83. Đề tham khảo tuyển sinh 10 Quận Gò Vấp – Đề số 1 85. Đề tham khảo tuyển sinh 10 Quận Gò Vấp – Đề số 2 87. Đề tham khảo tuyển sinh 10 Quận Gò Vấp – Đề số 3 89. Đề tham khảo tuyển sinh 10 Quận Phú Nhuận – Đề số 1 91. Đề tham khảo tuyển sinh 10 Quận Phú Nhuận – Đề số 2 93. Đề tham khảo tuyển sinh 10 Quận Phú Nhuận – Đề số 3 95. Đề tham khảo tuyển sinh 10 Quận Tân Bình – Đề số 1 97. Đề tham khảo tuyển sinh 10 Quận Tân Bình – Đề số 2 99. Đề tham khảo tuyển sinh 10 Quận Tân Bình – Đề số 3 101. Đề tham khảo tuyển sinh 10 Quận Tân Phú – Đề số 1 103. Đề tham khảo tuyển sinh 10 Quận Tân Phú – Đề số 2 105. Đề tham khảo tuyển sinh 10 Quận Tân Phú – Đề số 3 107. Đề tham khảo tuyển sinh 10 Huyện Bình Chánh – Đề số 1 109. Đề tham khảo tuyển sinh 10 Huyện Bình Chánh – Đề số 2 111. Đề tham khảo tuyển sinh 10 Huyện Bình Chánh – Đề số 3 113. Đề tham khảo tuyển sinh 10 Huyện Cần Giờ – Đề số 1 115. Đề tham khảo tuyển sinh 10 Huyện Cần Giờ – Đề số 2 117. Đề tham khảo tuyển sinh 10 Huyện Cần Giờ – Đề số 3 119. Đề tham khảo tuyển sinh 10 Huyện Củ Chi – Đề số 01 121. Đề tham khảo tuyển sinh 10 Huyện Củ Chi – Đề số 02 122. Đề tham khảo tuyển sinh 10 Huyện Củ Chi – Đề số 03 123. Đề tham khảo tuyển sinh 10 Huyện Hóc Môn – Đề số 1 125. Đề tham khảo tuyển sinh 10 Huyện Hóc Môn – Đề số 2 127. Đề tham khảo tuyển sinh 10 Huyện Hóc Môn – Đề số 3 129. Đề tham khảo tuyển sinh 10 Huyện Nhà Bè – Đề số 01 131. Đề tham khảo tuyển sinh 10 Huyện Nhà Bè – Đề số 02 133. Đề tham khảo tuyển sinh 10 Huyện Nhà Bè – Đề số 03 135.
Đề khảo sát Toán tuyển sinh 10 năm 2022 - 2023 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát môn Toán 9 tuyển sinh vào lớp 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình. Trích dẫn đề khảo sát Toán tuyển sinh 10 năm 2022 – 2023 phòng GD&ĐT Tiền Hải – Thái Bình : + Một lon nước ngọt hình trụ có bán kính đáy là 3cm, đường cao gấp 4 lần bán kính đáy. Tính thể tích lon nước đó. + Cho nửa đường tròn (O; R) đường kính BC. Gọi H là trung điểm của OB. Đường thẳng d vuông góc với BC tại H cắt nửa đường tròn trên ở A. Trên cung AC lấy điểm M (M không trùng với A và C). Tia CM cắt đường thẳng d ở E. BM cắt đường thẳng d ở F và BE cắt nửa đường tròn trên ở Q. a) Chứng minh tứ giác BHME nội tiếp một đường tròn. b) Chứng minh tứ giác EQHC nội tiếp và tính giá trị của biểu thức AC2 + BQ.BE theo R. c) Chứng minh rằng khi M di động trên cung AC thì đường tròn ngoại tiếp tam giác BFE luôn đi qua hai điểm cố định. + Cho hai biểu thức 1) Tính giá trị của biểu thức A khi x = 9. 2) Rút gọn biểu thức B. 3) Tìm tất cả các giá trị của x để biểu thức P = A.B nhận giá trị là số nguyên.
Đề tham khảo tuyển sinh vào lớp 10 THPT năm 2022 - 2023 sở GDĐT Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Phú Thọ; đề thi gồm 02 trang với 10 câu trắc nghiệm khách quan (chiếm 2.5 điểm) và 04 câu tự luận (chiếm 7.5 điểm), thời gian làm bài 120 phút (không kể thời gian phát đề), đề thi có đáp án và lời giải chi tiết, bảng đáp án và lời giải chi tiết được biên soạn bởi thầy giáo Vũ Hưng và thầy giáo Nguyễn Quang. Trích dẫn đề tham khảo tuyển sinh vào lớp 10 THPT năm 2022 – 2023 sở GD&ĐT Phú Thọ : + Trên một cái thang dài 3,5m người ta ghi: “Để đảm bảo an toàn khi sử dụng, phải đặt thang tạo với mặt đất một góc có độ lớn từ 60 đến 70 độ”. Gọi x m x 0 là khoảng cách từ chân thang đến chân tường. Để đảm bảo an toàn khi sử dụng thì điều kiện của x là? + Cho parabol 2 P y x và đường thẳng d y mx 3 2. a) Viết phương trình đường thẳng đi qua hai điểm A và B. Biết hai điểm A và B đều thuộc parabol P có hoành độ lần lượt là [1;2]. b) Tìm m để đường thẳng d cắt parabol P tại hai điểm phân biệt 1 1 C x y 2 2 D x y sao cho 2 2 2 1 2 1 T y y x x 10 đạt giá trị nhỏ nhất. + Cho đường tròn O và dây BC không đi qua O. Điểm A thuộc cung lớn BC (A khác B C), M là điểm chính giữa cung nhỏ BC. Hai tiếp tuyến của O tại C và M cắt nhau ở N. Gọi K là giao điểm của đường thẳng AB và CM, tia AM cắt tia CN tại P, hai đoạn thẳng AM và BC cắt nhau tại Q. Chứng minh rằng a) Tứ giác ACPK nội tiếp đường tròn b) MN song song với BC. c) 1 1 1 CN KP CQ.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán và chuyên Tin) năm 2021 – 2022 sở GD&ĐT Vĩnh Phúc; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Vĩnh Phúc : + Cho hình thang ABCD (AD song song với BC, AD < BC). Các điểm E, F lần lượt thuộc các cạnh AB, CD. Đường tròn ngoại tiếp tam giác AEF cắt đường thẳng AD tại M (M không trùng với A và D, D nằm giữa A và M), đường tròn ngoại tiếp tam giác CEF cắt đường thẳng BC tại điểm N (N không trùng với B và C, B nằm giữa C và N). Đường thẳng AB cắt đường thẳng CD tại điểm P, đường thẳng EN cắt đường thẳng FM tại điểm Q. Chứng minh rằng: a) Tứ giác EFQP nội tiếp đường tròn. b) PQ song song với BC và tâm đường tròn ngoại tiếp các tam giác PQE, AMF, CEN cùng nằm trên một đường thẳng cố định. c) Các đường thẳng MN, BD, EF đồng quy tại một điểm. + Thầy Quyết viết các số nguyên 1, 2, 3,…., 2021, 2002 lên bảng. Thầy Quyết thực hiện việc thay số như sau: Mỗi lần thay số, thầy chọn ra hai số bất kì trên bảng, xóa hai số này đi và viết lên bảng số trung bình cộng của hai số vừa xóa. Sau 2021 lần thay số như vậy, trên bảng còn lại duy nhất một số. a) Chứng minh rằng số còn lại trên bảng có thể là số 2021. b) Chứng minh rằng số còn lại trên bảng có thể là số 2006. + Tìm tất cả các bộ ba số nguyên dương a b c sao cho a 2 a b c b 2 2 là số chính phương.