Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 12 năm 2022 - 2023 lần 1 trường THPT Chu Văn An - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 12 năm học 2022 – 2023 lần 1 trường THPT Chu Văn An, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 12 năm 2022 – 2023 lần 1 trường THPT Chu Văn An – Thanh Hóa : + Cho một miếng tôn mỏng hình chữ nhật ABCD với AB = 4dm và AD = 6dm. Trên cạnh AD lấy điểm E sao cho AE = 1dm, trên cạnh BC lấy điểm F là trung điểm BC (tham khảo hình 1). Cuộn miếng tôn lại một vòng sao cho AB và DC trùng khít nhau. Khi đó miếng tôn tạo thành mặt xung quanh của hình trụ (tham khảo hình 2). Thể tích V của tứ diện ABEF trong hình 2 bằng? + Một bồn hình trụ chứa dầu được đặt nằm ngang, có chiều dài 5m, bán kính đáy 1m, với nắp bồn đặt trên mặt nằm ngang của mặt trụ. Người ta rút dầu trong bồn tương ứng với 0,5m của đường kính đáy. Tính thể tích gần đúng nhất của khối dầu còn lại trong bồn. + Cho X là tập các giá trị của tham số m thỏa mãn đường thẳng (dy m): 12 7 cùng với đồ thị (C) của hàm số 1 3 2 4 1 3 y x mx x tạo thành hai miền kín có diện tích lần lượt là 1 2 S S thỏa mãn 1 2 S S (xem hình vẽ). Tích các giá trị của các phần tử của X là?

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Nghệ An (Bảng A)
Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Nghệ An (Bảng A) Bản PDF Thứ Tư ngày 28 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Nghệ An tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Nghệ An (Bảng A) gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Nghệ An (Bảng A) : + Cho x, y, z là các số thực dương thỏa mãn 2x + 4y + 7z = 2xyz . Tìm giá trị nhỏ nhất của biểu thức P = x + y + z. + Cho hình lăng trụ ABC.A1B1C1 có đáy là tam giác đều cạnh bằng a và BA1 = BB1 = BC1 = a√3. a) Tính khoảng cách từ C đến mặt phẳng (ABB1A1). b) Gọi G1, G2, G3 lần lượt là trọng tâm các tam giác ABB1, ACC1, CBB1. Tính thể tích khối đa diện lồi có các đỉnh là các điểm G1, G2, G3, A1, B1 và C1. + Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc và SA = 1, SB = SC = 2√2. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Một mặt phẳng (a) thay đổi đi qua I lần lượt cắt các tia SA, SB, SC tại M, N, P. Chứng minh rằng 1/SM^2 + 1/SN^2 + 1/SP^2 >= 5/8.
Đề thi chọn đội tuyển học sinh giỏi Toán năm 2021 sở GD ĐT Lâm Đồng
Nội dung Đề thi chọn đội tuyển học sinh giỏi Toán năm 2021 sở GD ĐT Lâm Đồng Bản PDF Ngày 11 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi chọn học sinh vào đội tuyển bồi dưỡng thi học sinh giỏi Quốc gia môn Toán năm học 2020 – 2021. Đề thi chọn đội tuyển học sinh giỏi Toán năm 2021 sở GD&ĐT Lâm Đồng gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi chọn đội tuyển học sinh giỏi Toán năm 2021 sở GD&ĐT Lâm Đồng : + Cho tam giác ABC nhọn, không cân, nội tiếp trong đường tròn (O). Gọi H là hình chiếu của A lên BC và D, E, M lần lượt là trung điểm HB, HC, BC. Đường tròn (ABE) tâm I cắt AC tại S và đường tròn (ACD) tâm J cắt AB tại R. a) Chứng minh rằng BC = 4IJ. b) Trung tuyến đỉnh H của tam giác AHM cắt RS tại T, chứng minh rằng các đường thẳng AT, BS, CR đồng quy. + Cho số a = 2019.2020.2021 và số nguyên dương n >= 3. Người ta xếp n số nguyên dương nào đó lên một đường tròn thỏa mãn đồng thời hai điều kiện sau: (i) Hai số nằm cạnh nhau có tích không chia hết cho a. (ii) Hai số không nằm cạnh nhau có tích chia hết cho a. a) Tìm một bộ các số nguyên dương thỏa mãn cách xếp trên. b) Tìm giá trị lớn nhất của n. + Cho tập S = {1; 2; …; n} với n là số nguyên dương. Gọi An là tập hợp các hoán vị (a1; a2; …; an) của tập S thỏa mãn điều kiện 2(a1 + a2 + … + ak) chia hết cho k với mọi k = 1; 2; …; n. a) Chứng minh rằng an – 1 chia hết cho n – 1 khi n chẵn và n > 3. b) Tìm số phần tử của A2020.
Đề thi HSG Toán THPT cấp tỉnh năm 2020 2021 sở GD ĐT Ninh Bình
Nội dung Đề thi HSG Toán THPT cấp tỉnh năm 2020 2021 sở GD ĐT Ninh Bình Bản PDF Sáng thứ Tư ngày 07 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Ninh Bình tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh năm học 2020 – 2021 môn Toán. Đề thi HSG Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT Ninh Bình gồm 01 trang với 04 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi HSG Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT Ninh Bình : + Cho tam giác ABC nội tiếp đường tròn tâm O. Đường tròn ngoại tiếp tam giác ABC có tâm S, cắt đường thẳng AB tại điểm X khác B và cắt đường tròn Euler của tam giác ABC tại hai điểm D, E. Gọi K, L theo thứ tự là các điểm đối xứng của S qua AB, AC. Chứng minh rằng: a) XO vuông góc với AC. b) Đường thẳng KL đi qua tâm đường tròn Euler của tam giác ABC và hai đường thẳng AD, AE đối xứng nhau qua đường phân giác trong của BAC. + Cho số nguyên tố p, số nguyên dương a thỏa mãn 1 < a < p + 1 và q là ước nguyên tố của A = 1 + a + … + a^p-1. Chứng minh rằng q – 1 chia hết cho p. + Cho số nguyên dương n. Có bao nhiêu số tự nhiên chia hết cho 3, có n chữ số và các chữ số đều thuộc tập A = {3; 4; 5; 6; 9}?
Đề thi học sinh giỏi lớp 12 môn Toán năm 2020 2021 sở GD ĐT Quảng Trị
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm 2020 2021 sở GD ĐT Quảng Trị Bản PDF Thứ Ba ngày 06 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Trị tổ chức kỳ thi chọn học sinh giỏi văn hóa lớp 12 THPT môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Quảng Trị gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi học sinh giỏi Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Quảng Trị : + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng a, tam giác SAB vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích của khối chóp S.ABC và khoảng cách giữa hai đường thẳng SB và AC theo a. + Cho tam giác ABC ngoại tiếp đường tròn (I). Gọi M, D, E lần lượt là trung điểm của BC, IB, IC; F, G lần lượt là tâm đường tròn ngoại tiếp các tam giác ABD và ACE. Chứng minh AM vuông góc FG. + Cho dãy số (xn) được xác định bởi x1 = √2 và x_n+1 = √(2 – xn) với mọi n >= 1. Chứng minh dãy số (xn) có giới hạn hữu hạn và tìm giới hạn đó.