Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề rút gọn biểu thức chứa căn thức bậc hai

Tài liệu gồm 44 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề rút gọn biểu thức chứa căn thức bậc hai, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 8. A. KIẾN THỨC TRỌNG TÂM Để rút gọn biểu thức chứa căn bậc hai ta thường thực hiện các bước sau: + Bước 1: Tìm điều kiện xác định của biểu thức (nếu đề chưa cho điều kiện). Chú ý điều kiện căn thức, điều kiện mẫu và điều kiện phần chia. + Bước 2: Phân tích mẫu thành nhân tử, kết hợp phân tích tử bằng các phép biến đổi đơn giản. + Bước 3: Bỏ ngoặc, thu gọn các biểu thức một cách hợp lý. Kết hợp điều kiện bài toán để kết luận. B. CÁC DẠNG BÀI MINH HỌA I. CÁC DẠNG TOÁN Bài toán rút gọn tổng hợp thường có các bài toán phụ: tính giá trị biểu thức khi cho giá trị của ẩn; tìm điều kiện của biến để biểu thức lớn hơn (nhỏ hơn) một số nào đó; tìm giá trị của biến để biểu thức có giá trị nguyên; tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức … Do vậy, ta phải áp dụng các phương pháp tương ứng, thích hợp cho từng dạng toán. Dạng toán 1 . Rút gọn biểu thức. Dạng toán 2 . Rút gọn biểu thức – tính giá trị của biểu thức khi cho giá trị của ẩn. Các bước thực hiện: + Rút gọn, chú ý điều kiện của biểu thức. + Rút gọn giá trị của biến nếu cần. + Thay vào biểu thức rút gọn. Dạng toán 3 . Rút gọn biểu thức – tìm x để biểu thức rút gọn đạt giá trị nguyên. + Rút gọn biểu thức. + Lấy tử chia cho mẫu tách biểu thức thành tổng của một số nguyên và một biểu thức có tử là một số nguyên. + Trong biểu thức mới tạo thành, ta cho mẫu là các ước nguyên của tử để suy ra x. Dạng toán 4 . Rút gọn biểu thức – tìm x để biểu thức thỏa bằng hoặc lớn hơn (nhỏ hơn) một số cho trước. + Rút gọn. + Cho biểu thức rút gọn thỏa điều kiện ta được phương trình hoặc bất phương trình, chú ý điều kiện của ẩn trong bài toán. Dạng toán 5 . Rút gọn biểu thức – tìm x để biểu thức đạt giá trị lớn nhất (GTLN), giá trị nhỏ nhất (GTNN). + Rút gọn. + Biến đổi biểu thức về dạng: Số không âm + hằng số rồi suy ra GTNN; Hằng số – số không âm rồi suy ra GTLN; Sử dụng bất đẳng thức Cô-si. Dạng toán 6 . Nâng cao phát triển tư duy. II. TRẮC NGHIỆM RÈN PHẢN XẠ

Nguồn: toanmath.com

Đọc Sách

Rút gọn biểu thức đại số và các bài toán liên quan
Nội dung Rút gọn biểu thức đại số và các bài toán liên quan Bản PDF - Nội dung bài viết Rút Gọn Biểu Thức Đại Số và Các Bài Toán Liên Quan Rút Gọn Biểu Thức Đại Số và Các Bài Toán Liên Quan Trên hành trình học tập, bài toán rút gọn biểu thức đại số và các bài toán liên quan luôn là một phần không thể thiếu trong các đề thi tuyển sinh vào lớp 10 môn Toán. Dù có thể thấy những bài toán này không quá khó, nhưng để giải chúng một cách chính xác và nhanh chóng, học sinh cần phải nắm vững các công thức biến đổi. Cụ thể, dưới đây là 12 dạng bài tập phổ biến khi đề cập đến việc rút gọn biểu thức đại số và các bài toán liên quan: Dạng 1: Rút gọn biểu thức. Để thực hiện dạng bài này, học sinh cần nhớ điều kiện xác định của biến x để các phép toán diễn ra đúng. Dạng 2: Tính giá trị của biểu thức khi biết giá trị của biến x. Nếu x là một biểu thức, cần rút gọn trước khi tính giá trị. Dạng 3: Tìm giá trị của biến x để biểu thức đạt một giá trị nhất định. Dạng 4: Tìm giá trị của biến x để biểu thức thỏa mãn một điều kiện cho trước. Dạng 5: So sánh biểu thức với một số hoặc biểu thức khác. Dạng 6: Chứng minh một biểu thức đạt giá trị lớn nhất hoặc nhỏ nhất. Dạng 7: Tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức có giá trị nguyên. Dạng 8: Tìm giá trị của biến x là số thực để biểu thức có giá trị nguyên. Dạng 9: Tìm giá trị của tham số để phương trình hoặc bất phương trình có nghiệm. Dạng 10: Tìm giá trị để biểu thức bằng hoặc nhỏ hơn giá trị tuyệt đối của nó. Dạng 11: Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức. Dạng 12: Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức với biến x là số tự nhiên. Việc nắm vững cách giải các dạng bài tập trên sẽ giúp học sinh tự tin và thành công khi đối mặt với các bài toán rút gọn biểu thức đại số và các bài toán liên quan trong các kỳ thi.
Tổng hợp kiến thức cơ bản lớp 9 môn Toán
Nội dung Tổng hợp kiến thức cơ bản lớp 9 môn Toán Bản PDF - Nội dung bài viết Tổng hợp kiến thức cơ bản lớp 9 môn ToánPHẦN 1: ĐẠI SỐPHẦN II – HÌNH HỌC Tổng hợp kiến thức cơ bản lớp 9 môn Toán Để giúp học sinh lớp 9 tra cứu nhanh các kiến thức cơ bản môn Toán, Sytu đã tổng hợp tài liệu hữu ích này. Tài liệu gồm 17 trang bao gồm lý thuyết, các dạng toán và cách giải, nhằm giúp học sinh nắm vững chương trình Toán lớp 9 và chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. PHẦN 1: ĐẠI SỐ Bao gồm kiến thức cần nhớ về điều kiện để căn thức có nghĩa, các công thức biến đổi căn thức, hàm số y = ax + b, hàm số y = ax^2, vị trí tương đối của hai đường thẳng, xét vị trí tương đối của đường thẳng và đường cong, phương trình bậc hai, hệ thức Vi-et và cách giải bài toán bằng phương trình, hệ phương trình. Các dạng bài tập bao gồm: Rút gọn biểu thức, bài toán tính toán, chứng minh đẳng thức và bất đẳng thức, giải phương trình, bất phương trình, giải phương trình vô tỉ, giải phương trình chứa dấu giá trị tuyệt đối, tìm giá trị lớn nhất và nhỏ nhất của biểu thức, và các bài toán liên quan đến hàm số. PHẦN II – HÌNH HỌC Chỉ cần nhớ hệ thức lượng trong tam giác vuông, tỉ số lượng giác của góc nhọn, và các hệ thức khác trong tam giác. Bên cạnh đó, cần hiểu về đường tròn, tiếp tuyến và góc với đường tròn, độ dài đường và cung tròn, diện tích hình tròn và hình quạt tròn, các loại đường tròn và hình không gian, tứ giác nội tiếp. Các dạng bài tập trong phần này bao gồm chứng minh các đẳng thức hình học, tam giác, đường thẳng, đường tròn đồng quy và đồng dạng, tiếp tuyến của đường tròn, và tính toán độ dài cạnh và góc của các hình học.
Giải bài toán chứa căn Nguyễn Tiến
Nội dung Giải bài toán chứa căn Nguyễn Tiến Bản PDF - Nội dung bài viết Giải bài toán chứa căn Nguyễn Tiến - Tài liệu tổng hợp kiến thức căn thức cho học sinh lớp 9 Giải bài toán chứa căn Nguyễn Tiến - Tài liệu tổng hợp kiến thức căn thức cho học sinh lớp 9 Tài liệu "Giải bài toán chứa căn" được biên soạn bởi thầy giáo Nguyễn Tiến, gồm 89 trang nhằm giúp học sinh lớp 9 nắm vững phương pháp giải các bài toán chứa căn. Tài liệu tập trung vào các dạng bài tập căn thức cơ bản, phù hợp với đối tượng học sinh cần củng cố kiến thức và ôn tập chuẩn bị cho kỳ thi vào lớp 10. Tài liệu được chia thành nhiều phần, từ việc tìm hiểu về căn bậc hai, đến điều kiện xác định biểu thức có nghĩa và các bài toán rút gọn biểu thức chứa căn. Các dạng toán chứa căn được phân loại rõ ràng, từ dạng đơn giản đến phức tạp, giúp học sinh hiểu rõ vấn đề và rèn luyện kỹ năng giải toán. Đặc biệt, tài liệu cũng cung cấp các bài tập tổng hợp phong phú và hướng dẫn giải chi tiết, giúp học sinh rèn luyện kỹ năng giải toán căn thức một cách hiệu quả. Bên cạnh đó, có cả các bài toán phụ yêu cầu tư duy linh hoạt và sáng tạo từ học sinh. Trên cơ sở nội dung này, học sinh sẽ có cơ hội nắm vững kiến thức căn thức, rèn luyện tư duy logic và xây dựng nền tảng vững chắc cho việc học toán ở cấp độ cao hơn.
Chuyên đề cực trị Hình học 9
Nội dung Chuyên đề cực trị Hình học 9 Bản PDF - Nội dung bài viết Chuyên đề cực trị Hình học 9 Chuyên đề cực trị Hình học 9 Tài liệu "Chuyên đề cực trị Hình học 9" bao gồm 21 trang hướng dẫn phương pháp giải bài toán cực trị Hình học 9. Đây là những bài toán nâng cao thường xuất hiện trong đề thi Toán lớp 9. Nội dung của tài liệu sẽ giúp học sinh hiểu rõ hơn về cách giải các bài toán cực trị trong Hình học và chuẩn bị tốt cho kỳ thi cuối kỳ.