Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 1 Toán 9 năm 2019 - 2020 phòng GDĐT Quận 7 - TP HCM

Theo đúng như kế hoạch kiểm tra đánh giá chất lượng học tập của học sinh lớp 9 đã đề ra, ngày 12 tháng 12 năm 2019, phòng Giáo dục và Đào tạo Quận 7, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra học kỳ 1 môn Toán 9 năm học 2019 – 2020. Đề thi học kỳ 1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Quận 7 – TP HCM gồm có 02 trang với 07 bài toán, thời gian làm bài 90 phút, đề được biên soạn theo dạng tự luận hoàn toàn, phù hợp với học sinh lớp 9 THCS, ưu tiên các bài toán thực tế để các em hiểu được một số ứng dụng của toán học trong đời sống. Trích dẫn đề thi học kỳ 1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Quận 7 – TP HCM : + Bạn Hoa vào nhà sách Fahasa mua một số quyển tập với giá 8000 đồng/1 quyển tập và 1 quyển sách “Tài liệu Dạy – Học Toán 9” với giá 59000 đồng. a/ Tính số tiền bạn Hoa phải trả khi mua 4 quyển tập và 1 quyển sách. b/ Nếu bạn Hoa đem theo 119000 đồng. Gọi x là số tập bạn Hoa mua và y là số tiền phải trả (bao gồm mua tập và 1 quyển sách). Hãy biểu diễn y theo x và tính số tập tối đa bạn Hoa có thể mua được. + Cuối tuần, một nhóm bạn muốn đi thư giãn bằng cách cắm trại ngoài trời. Để che nắng che mưa trong lúc cắm trại, các bạn quyết định dựng lều chữ A. Theo tính toán của nhóm, góc tạo bởi tấm bạt với mặt đất là 650 và các bạn có sẵn hai cây cọc có chiều cao là 2 m. Hỏi nhóm cần mua tấm bạt dài khoảng bao nhiêu m để dựng lều chữ A? (làm tròn đến chữ số thập phân thứ hai). [ads] + Rừng ngập mặn Cần Giờ (còn gọi là Rừng Sác), trong chiến tranh bom đạn và chất độc hóa học đã làm nơi đây trở thành “vùng đất chết”; được trồng lại từ năm 1979, nay đã trở thành “lá phổi xanh” cho Thành phố Hồ Chí Minh, được UNESCO công nhận là khu dự trữ sinh quyển của thế giới đầu tiên ở Việt Nam vào ngày 21/01/2000. Diện tích rừng phủ xanh được cho bởi hàm số: S = 0,05t + 3,14 trong đó S tính bằng nghìn héc-ta, t tính bằng số năm kể từ năm 2000. a) Tính diện tích Rừng Sác được phủ xanh vào năm 2000. b) Diện tích Rừng Sác được phủ xanh đạt 4,04 nghìn héc-ta vào năm nào?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 Toán 9 năm 2020 - 2021 trường THPT chuyên Hà Nội - Amsterdam
Đề thi học kì 1 Toán 9 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam : + Cho nửa đường tròn tâm O với bán kính R, đường kính AB. Trên nửa mặt phẳng bờ là đường thẳng AB chứa nửa đường tròn, kẻ tia tiếp tuyến Ax tại A của nửa đường tròn. Xét điểm M thay đổi trên da, không trùng với A. Gọi E là điểm đối xứng với A qua OM. a) Chứng minh rằng ME là một tiếp tuyến của nửa đường tròn (O). b) Đoạn OM cắt nửa đường tròn (O) tại I. Chứng minh rằng I là tâm đường tròn nội tiếp của tam giác AME. c) Gọi N là trung điểm EB. Tia ME cắt ON tại P. Hãy xác định vị trí của điểm M trên tia Ax để diện tích tam giác OMP đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó theo R. d) Gọi C là giao điểm của BE và tia Ox, OC cắt AE tại Q. Kẻ đường thẳng qua Q và song song với Ax, cắt OM tại D. Chứng minh rằng A, D, P thẳng hàng. + Giải phương trình: x2 – 1 = 2√(2x + 1). + Cho a, b là các số thực dương thỏa mãn a – √a = √b – b. Tìm giá trị nhỏ nhất của biểu thức: P = a2 + b2 + 2020/(√a + √b)^2.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Sóc Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Sóc Sơn, thành phố Hà Nội. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Sóc Sơn – Hà Nội : + Một máy bay cất cánh theo phương có góc nâng là 0 23 so với mặt đất. Hỏi muốn đạt độ cao 250m so với mặt đất thì máy bay phải bay lên một đoạn đường là bao nhiêu mét? + Cho nửa đường tròn O R; đường kính AB. Lấy điểm C thuộc nửa đường tròn (C khác A và B). Kẻ OE vuông góc với CB (E thuộc CB). Kẻ tiếp tuyến Bx của nửa đường tròn, tiếp tuyến này cắt OE tại D. a) Chứng minh 2 OE OD R. b) Chứng minh CD là tiếp tuyến của O. c) Tứ giác ACDO là hình gì? Vì sao? d) Kẻ CH vuông góc với AB, CH cắt AD tại K. Chứng minh K là trung điểm của AD. + Cho hàm số 2 y m x m 1 4 (với m 1) có đồ thị là đường thẳng d. 1) Với giá trị nào của m thì hàm số đã cho nghịch biến? 2) Tìm m để đường thẳng d cắt đường thẳng d y x 2 5 tại một điểm trên trục tung. 3) Tìm m để đường thẳng d đi qua điểm A 1 3.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Đông Anh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Đông Anh, thành phố Hà Nội. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Đông Anh – Hà Nội : + Một cầu trượt trong công viên có độ dốc là 28 và độ cao so với mặt đất là 2,1m. Tính độ dài của mặt cầu trượt (làm tròn đến chữ số thập phân thứ nhất). + Cho nửa đường tròn O đường kính AB R 2, trên nửa đường tròn lấy điểm C AC BC. Gọi M là trung điểm của BC, qua B kẻ tiếp tuyến Bx với đường tròn O cắt tia OM tại D. a) Chứng minh: AC OD. b) Chứng minh DC là tiếp tuyến của đường tròn O c) VẽCH vuông góc với AB tại H và gọi I là trung điểm của cạnh CH. Kẻ tia tiếp tuyến Ay với nửa đường tròn O, BC cắt Ay tại F, BI cắt Ay tại E. Chứng minh E là trung điểm của AF và ba điểm E C D thẳng hàng. + Cho hàm số y m x m m 1 1 có đồ thị là đường thẳng d 1. Tìm giá trị của m để đường thẳng d đi qua A có tọa độ 1 3. 2. a) Vẽ đường thẳng d với giá trị m tìm được ở câu trên. b) Tìm tọa độ giao điểm của d với đường thẳng d y x 2 1.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Đan Phượng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Đan Phượng, thành phố Hà Nội. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Đan Phượng – Hà Nội : + Trong mặt phẳng Oxy, cho đường thẳng (d): y x 3. a) Xác định tọa độ các giao điểm A và B của đường thẳng (d) với hai trục Ox, Oy. Vẽ (d) trong mặt phẳng tọa độ Oxy; b) Tính chu vi của tam giác OAB; c) Tìm m để đường thẳng (d’): 2 2 y m x m m 8 2 song song với đường thẳng (d). + Một tàu ngầm ở trên mặt biển (điểm A) lặn xuống theo phương tạo với mặt nước biển một góc 20. Nếu tàu chuyển động theo phương AC lặn xuống đến vị trí C được 300m thì nó ở độ sâu theo phương thẳng đứng BC là bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất) (Xem hình vẽ mô tả). + Từ điểm A nằm ngoài đường tròn O vẽ hai tiếp tuyến AM và AN với đường tròn O (M N là các tiếp điểm). Gọi H là giao của MN với OA. a) Chứng minh OA MN và 2 OM OH OA. b) Từ M kẻ đường kính MB của đường tròn O. Đường thẳng AB cắt đường tròn O tại C (C khác B). Chứng minh AC AB AH AO. c) Gọi E là giao điểm của đoạn thẳng OA với đường tròn O. Chứng minh EA MA EH MH. d) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng MN tại D. Chứng minh DB MB.