Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 9 môn Toán vòng 1 năm 2023 2024 trường THPT chuyên Hà Nội Amsterdam

Nội dung Đề thi HSG lớp 9 môn Toán vòng 1 năm 2023 2024 trường THPT chuyên Hà Nội Amsterdam Bản PDF - Nội dung bài viết Đề thi HSG lớp 9 môn Toán vòng 1 năm 2023-2024 trường THPT chuyên Hà Nội Amsterdam Đề thi HSG lớp 9 môn Toán vòng 1 năm 2023-2024 trường THPT chuyên Hà Nội Amsterdam Sytu xin chào quý thầy cô giáo và các em học sinh lớp 9. Đây là đề thi chọn đội tuyển học sinh giỏi môn Toán lớp 9 vòng 1 năm học 2023-2024 của trường THPT chuyên Hà Nội Amsterdam. Đề thi sẽ diễn ra vào thứ Năm ngày 14 tháng 9 năm 2023. Đề thi HSG Toán lớp 9 vòng 1 năm 2023-2024 của trường THPT chuyên Hà Nội Amsterdam đưa ra các câu hỏi thú vị và phong phú. Ví dụ như: 1. Cho các số nguyên dương a, b, c, d thỏa mãn a + b + c + d = 2024, bạn hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = ab + bc + cd. 2. Trong tam giác ABC vuông tại A (AB < AC), đường thẳng PF song song với đường thẳng CM. Chứng minh rằng tam giác GEF cân và đường thẳng AG vuông góc với đường thẳng EF. 3. Xác định tất cả các tập con tốt của tập hợp các số nguyên dương theo yêu cầu đã đề ra. Đây là một cơ hội tuyệt vời để các em học sinh thể hiện khả năng và kiến thức Toán của mình. Mong rằng đề thi sẽ giúp các em rèn luyện và phát triển kỹ năng giải bài toán hiệu quả. Chúc các em thành công và tự tin thể hiện tài năng của mình!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Phú Thọ; đề thi gồm 16 câu trắc nghiệm (08 điểm) và 04 câu tự luận (12 điểm), thời gian làm bài 150 phút. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Phú Thọ : + Một chiếc xe khách khởi hành từ Hà Nội và một chiếc xe tải khởi hành từ Vinh cùng một lúc và đi ngược chiều nhau. Sau khi gặp nhau, xe khách chạy thêm 2 giờ thì đến Vinh, còn xe tải chạy thêm 4 giờ 30 phút thì đến Hà Nội. Biết Hà Nội cách Vinh là 300 km, hai xe đi cùng tuyến đường. Vận tốc của xe khách bằng? + Khi tính toán thể tích căn phòng hình hộp chữ nhật, bạn An đã nhập sai chiều cao vào máy tính, An đã nhập số liệu lớn hơn 1/3 chiều cao thật. Sau khi có kết quả, An nói: “Mình đã nhầm, nhưng không sao, lại trừ bớt đi 1/3 kết quả này thì sẽ cho kết quả đúng thôi”. Bạn Bình, người đã tính đúng kết quả nói rằng: “Kết quả đó vẫn chưa đúng, An phải tiếp tục cộng thêm 8m3 nữa mới đúng”. Thể tích căn phòng bằng? + Một đoàn học sinh đi trải nghiệm ở công viên Văn Lang thành phố Việt Trì bằng ô tô. Nếu mỗi ô tô chở 22 học sinh thì thừa 1 học sinh. Nếu bớt đi 1 ô tô thì số học sinh được chia đều cho các ô tô còn lại. Biết mỗi ô tô chở không quá 30 học sinh, số học sinh của đoàn tham quan là?
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Châu Thành - Bến Tre
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Châu Thành, tỉnh Bến Tre; kỳ thi được diễn ra vào ngày 04 tháng 02 năm 2023.
Đề học sinh giỏi Toán THCS năm 2022 - 2023 phòng GDĐT Ea HLeo - Đắk Lắk
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Ea H’Leo, tỉnh Đắk Lắk; kỳ thi được diễn ra vào ngày 09 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi Toán THCS năm 2022 – 2023 phòng GD&ĐT Ea H’Leo – Đắk Lắk : + Chứng minh rằng với mọi số tự nhiên n lẻ ta có (n2 – 1)/4 là tích của hai số tự nhiên liên tiếp. + Cho M = 2.(9^2009 + 9^2008 + … + 9 + 1). Chứng minh M không là số chính phương. + Cho đường tròn tâm O đường kính AB và một điểm M bất kì thuộc đường tròn (M khác A và B). Gọi H là hình chiếu vuông góc của điểm M trên AB. Đường tròn đường kính HM cắt các dây cung MA, MB lần lượt tại P và Q. a. Chứng minh rằng: PHQ = 90° và MP.MA = MQ.MB. b. Gọi E, F lần lượt là trung điểm của AH, BH. Tứ giác EPQF là hình gì? c. Xác định vị trí của M để tứ giác EPQF có diện tích lớn nhất.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nghệ An (Bảng A và Bảng B); kỳ thi được diễn ra vào Chủ Nhật ngày 12 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Nghệ An : + Cho các số thực dương x, y, z thỏa mãn x2 − y2 + z2 = xy + 3yz + zx. Tìm giá trị lớn nhất của biểu thức P. + Cho nửa đường tròn (O), đường kính BC = 2R và một điểm A thay đổi trên nửa đường tròn đó (A không trùng với B và C). Vẽ AH vuông góc với BC tại H. Gọi I, J lần lượt là tâm đường tròn nội tiếp các tam giác AHB và AHC. Đường thẳng IJ cắt AB, AC theo thứ tự tại M và N. a) Chứng minh tam giác AMN vuông cân. b) Gọi P là giao điểm của BI và CJ. Chứng minh. c) Tìm giá trị lớn nhất của chu vi tam giác HIJ theo R. + Trên một khu đất hình chữ nhật kích thước 100m × 120m. Người ta muốn xây một sân bóng nhân tạo có nền đất là hình chữ nhật kích thước 25m × 35m và 9 bồn hoa hình tròn đường kính 5m. Chứng minh rằng dù xây trước 9 bồn hoa ở các vị trí như thế nào thì trên phần đất còn lại luôn tìm được một nền đất kích thước 25m x 35m để xây sân bóng.