Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG Toán 8 vòng 2 năm 2023 - 2024 phòng GDĐT Vũ Thư - Thái Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi môn Toán 8 cấp huyện vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Vũ Thư, tỉnh Thái Bình; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2023. Trích dẫn Đề khảo sát HSG Toán 8 vòng 2 năm 2023 – 2024 phòng GD&ĐT Vũ Thư – Thái Bình : + Đa thức f(x) chia cho (x + 1) dư 2, chia cho (x – 2) dư 5, chia cho (x + 1)(x – 2) thì thương là 5x – 1 và còn dư. Tính f(4). + Cho tam giác ABC vuông tại A, kẻ phân giác trong AD (D thuộc BC), gọi M, N lần lượt là hình chiếu của D trên AB và AC. BN cắt DM tại E, CM cắt DN tại F, gọi K là giao điểm của BN và CM. a/ Tứ giác AMDN là hình gì? Vì sao? b/ Chứng minh: AB AC. c/ Chứng minh: AK vuông góc BC. + Cho tam giác ABC có AB + AC = 2BC. Gọi I là giao điểm ba đường phân giác trong, G là trọng tâm của ABC (I khác G). Chứng minh rằng IG // BC.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm định chất lượng Toán 8 năm 2021 - 2022 phòng GDĐT Nghi Lộc - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm định chất lượng môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An. Trích dẫn đề kiểm định chất lượng Toán 8 năm 2021 – 2022 phòng GD&ĐT Nghi Lộc – Nghệ An : + Chứng minh rằng với mọi n thuộc số tự nhiên thì biểu thức M chia hết cho 21. + Tìm số tự nhiên gồm 4 chữ số thỏa mãn đồng thời hai tính chất: a) Khi chia số đó cho 100 ta được số dư là 6 b) Khi chia số đó cho 51 ta được số dư là 17. + Chứng minh rằng với mọi a thuộc Z thì N là một số chính phương.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Kim Thành, tỉnh Hải Dương. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Kim Thành – Hải Dương : + Cho biểu thức. Rút gọn A và tìm giá trị nguyên của x để A nhận giá trị nguyên. + Cho a, b, c là các số nguyên và thỏa mãn a3 + b3 = 5c3 + 11d3. Chứng minh rằng tổng (a + b + c + d) chia hết cho 6. + Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thẳng (d) song song với AH, (d) cắt đường thắng AC tại P. Gọi Q là trung điểm của BP, tia AQ cắt đường thẳng BC tại I. Chứng minh.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT thành phố Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 THCS năm học 2021 – 2022 phòng Giáo dục và Đào tạo thành phố Ninh Bình, tỉnh Ninh Bình.
Đề học sinh năng khiếu Toán 8 năm 2021 - 2022 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra học sinh năng khiếu môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2022. Trích dẫn đề học sinh năng khiếu Toán 8 năm 2021 – 2022 phòng GD&ĐT Thanh Trì – Hà Nội : + Cho ABC có độ dài các cạnh lần lượt là a, b, c; chu vi của tam giác là 2p. Chứng minh rằng? + Cho đoạn thẳng AB và một điểm M bất kì trên đoạn thẳng đó (M khác A và B). Trên cùng một nửa mặt phẳng bờ AB dựng hai hình vuông AMCD và BMEF có tâm đối xứng lần lượt là hai điểm O và I. Gọi N là giao điểm của AE và BC, P là giao điểm của AC và BE. a) Chứng minh: E là trực tâm của ABC từ đó suy ra BC vuông góc với AE. b) Chứng minh ba điểm D, N, F thẳng hàng. c) Gọi K là giao điểm của AC và MN. Chứng minh: AP.CK = AK.CP d) Xác định vị trí của điểm M trên đoạn thẳng AB sao cho đoạn thẳng MN có độ dài lớn nhất. + Người ta dùng các số 1, 2, 3, 4, 5, 6, 7, 8 để gán cho các đỉnh của một hình lập phương, hai đỉnh khác nhau thì gán các số khác nhau. Sau đó tính tổng ở hai đỉnh kề nhau. Chứng minh rằng có ít nhất hai tổng bằng nhau?