Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kiểm tra học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT Phước Vĩnh - Bình Dương

Kiểm tra học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT Phước Vĩnh – Bình Dương gồm 25 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho tam giác ABC có trọng tâm G. Chọn phát biểu đúng về phép tịnh tiến -vtAG A. Biến điểm A thành điểm G B. Biến điểm G thành điểm A C. Biến điểm G thành trung điểm của đoạn BC D. Biến trung điểm của đoạn BC thành điểm G + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AD và SB. a) Chứng minh đường thẳng MN song song với mặt phẳng (SBD). b) Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (MNP). [ads] + Tìm mệnh đề sai? A. Đường thẳng d được gọi là song song với mp(α) nếu d không nằm trong mp(α) và d song song với một đường thẳng nằm trong (α) B. Nếu đường thẳng d song song với mp(α) thì trong (α) tồn tại vô số đường thẳng song song với d C. Đường thẳng d được gọi là song song với mp(α) nếu d song song với mọi đường thẳng nằm trong (α) D. Đường thẳng d được gọi là cắt mp(α) nếu d có một điểm chung duy nhất với (α)

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 11 năm học 2016 - 2017 trường THPT Trung Giã - Hà Nội
Đề thi HK1 Toán 11 năm học 2016 – 2017 trường THPT Trung Giã – Hà Nội gồm 50 câu hỏi trắc nghiệm khách quan, có đáp án. Trích một số bài toán trong đề thi: + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I là trung điểm của SA. Thiết diện của hình chóp cắt bởi mặt phẳng (IBC) là: A. Tứ giác IBCD B. Hình thang IGBC C. Hình thang IJCB (J là trung điểm của SD) D. Tam giác IBC + Tìm mệnh đề sai trong các mệnh đề sau: A. Nếu hai đường thẳng phân biệt cùng song song với một mặt phẳng thì chúng song song với nhau. B. Nếu một đường thẳng cắt một trong hai mặt phẳng song song với nhau thì sẽ cắt mặt phẳng còn lại. C. Nếu hai mặt phẳng phân biệt cùng song song với một mặt phẳng thứ ba thì chúng song song. D. Nếu hai mặt phẳng có một điểm chung thì chúng còn vô số điểm chung khác nữa. + Trong một môn học, cô giáo có 30 câu hỏi khác nhau trong đó có 15 câu hỏi khó, 10 câu hỏi trung bình và 5 câu hỏi dễ. Hỏi cô giáo có bao nhiêu cách để lập ra đề thi từ 30 câu hỏi đó, sao cho mỗi đề có 5 câu hỏi khác nhau và mỗi đề phải có đủ ba loại câu hỏi ?
Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An - Hà Nội 2014 - 2015
Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An – Hà Nội năm học 2014 – 2015 gồm 5 bài toán, có đáp án và thang điểm. Trích một số bài toán trong đề thi: + Một bình chứa 15 quả cầu, với 4 quả cầu xanh, 5 quả cầu đỏ và 6 quả cầu vàng. Lấy ngẫu nhiên 4 quả cầu. Tính xác suất để trong 4 quả cầu lấy được có đủ ba màu. + Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB song song với CD. Gọi M, N lần lượt là trung điểm của các cạnh SA, SB và P là điểm thuộc cạnh BC sao cho BP = 3PC. 1. Tìm giao tuyến của mặt phẳng (MNP) và mặt phẳng (SCD). 2. Tìm giao điểm của đường thẳng MP và mặt phẳng (SBD).
Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An - Hà Nội 2014 - 2015
Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An – Hà Nội năm học 2014 – 2015 gồm 5 bài toán, có đáp án và thang điểm Trích một số bài toán trong đề: + Từ các chữ số thuộc tập hợp A = {0,1,2,3,4,5}, có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau trong đó nhất thiết phải có mặt chữ số 1 và chữ số 2? + Gieo một con súc sắc 3 lần liên tiếp. Tính xác suất để trong 3 lần gieo có ít nhất 2 lần mặt xuất hiện là 6 chấm. + Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(1; -1) và đường thẳng d: 2x – 3y – 2 = 0. Viết phương trình đường thẳng d ‘ là ảnh của đường thẳng d qua phép đối xứng tâm A. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh SA, CD. 1. Tìm giao tuyến của hai mặt phẳng (EFD) và (SAB). 2. Xác định giao điểm của đường thẳng EF với mặt phẳng (SBD).
Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An - Hà Nội 2013 - 2014
Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An – Hà Nội năm học 2013 – 2014 gồm 6 bài toán, có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề thi: + Có 4 đồ vật đôi một khác nhau được chia hết cho ba người. Hỏi có bao nhiêu cách chia để mỗi người có ít nhất một đồ vật. + Gieo một con súc sắc (được chế tạo cân đối, đồng chất) hai lần liên tiếp. Tính xác suất để tổng số chấm trên mặt xuất hiện của con súc sắc trong hai lần gieo là một số lẻ. + Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. M và N lần lượt là trung điểm các cạnh SA, CD. 1. Chứng minh MN song song với mặt phẳng (SBC). 2. (a) là mặt phẳng qua M, song song với AN và SC. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (a). 3. Mặt phẳng (a) cắt đường thẳng SB tại I. Tính tỉ số IS/IB