Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập một số bài toán ứng dụng thực tiễn Võ Thanh Bình

Nội dung Tuyển tập một số bài toán ứng dụng thực tiễn Võ Thanh Bình Bản PDF - Nội dung bài viết Tuyển tập một số bài toán ứng dụng thực tiễn của Võ Thanh Bình Tuyển tập một số bài toán ứng dụng thực tiễn của Võ Thanh Bình Tài liệu này bao gồm một số bài toán ứng dụng thực tiễn được phân loại theo dạng bài và mức độ vận dụng. Dưới đây là một số ví dụ: 1. Bài toán về con kiến trong cốc: Có một cái cốc úp ngược với chiều cao 20cm, bán kính đáy là 3cm và bán kính miệng là 4cm. Con kiến đứng ở điểm A trên miệng cốc và muốn bò từ A đến điểm B ở đáy cốc. Hỏi con kiến phải bò quãng đường ngắn nhất là bao nhiêu? 2. Bài toán về cho thuê căn hộ: Một công ty bất động sản có 50 căn hộ cho thuê. Nếu giá thuê mỗi căn hộ là 2 triệu đồng/tháng, thì tất cả các căn hộ đều có người thuê. Tuy nhiên, nếu tăng giá thuê lên 100,000 đồng/tháng, thì có thêm hai căn hộ bị bỏ trống. Hỏi để có thu nhập cao nhất, công ty cần đặt giá thuê mỗi căn hộ là bao nhiêu? 3. Bài toán về xây đường ống dẫn nước: Một công ty muốn xây một đường ống dẫn từ điểm A trên bờ đến điểm B trên hòn đảo, với giá xây trên bờ là 50,000 USD/km và dưới nước là 130,000 USD/km. Tìm vị trí trên đoạn bờ mà khi nối ống theo hình tam giác thì chi phí ít nhất. Đây chỉ là một số ví dụ trong tuyển tập bài toán ứng dụng thực tiễn của Võ Thanh Bình, hi vọng sẽ giúp bạn rèn luyện kỹ năng giải quyết bài toán và áp dụng kiến thức vào thực tế một cách linh hoạt và sáng tạo!

Nguồn: sytu.vn

Đọc Sách

Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh
Nội dung Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Bản PDF - Nội dung bài viết Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Tài liệu "Kỹ thuật CASIO luyện thi THPT Quốc gia" do tác giả Lâm Hữu Minh biên soạn gồm 122 trang hướng dẫn sử dụng Casio để giải các dạng toán trong đề thi THPT Quốc gia. Kỹ thuật CASIO được áp dụng một cách sáng tạo và khác biệt so với cách dùng máy tính thông thường. Các phương pháp sử dụng máy tính Casio trong tài liệu này không chỉ giúp người học nhanh chóng và hiệu quả khi giải các bài toán mà còn phát triển sự linh hoạt, sáng tạo và tăng tốc độ xử lý vấn đề. Kỹ thuật CASIO hướng đến mục tiêu luyện cho người học sự dẻo tay, nhanh nhạy khi sử dụng máy tính Casio để giải toán. Đồng thời, tài liệu cũng cung cấp những phương pháp bấm máy hiệu quả, tránh những thao tác không cần thiết và giúp tối ưu hóa quá trình giải toán. Tuy đề thi ngày càng đòi hỏi tư duy và suy luận cao, nhưng việc học Kỹ thuật CASIO sẽ giúp người học vững chắc trong việc sử dụng máy tính Casio trong kỳ thi THPT Quốc gia. Việc thành thạo Kỹ thuật CASIO kết hợp với vốn kiến thức Toán học sẽ tạo nên sự tự tin và khả năng giải quyết vấn đề hiệu quả cho người học khi tham gia kỳ thi. Không chỉ giúp cải thiện kỹ năng sử dụng máy tính Casio mà còn khuyến khích sự sáng tạo và nghiên cứu trong việc giải các bài toán. Từ đó, người học có thể mở rộng và áp dụng Kỹ thuật CASIO vào các môn học khác.
Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán
Nội dung Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán Bản PDF - Nội dung bài viết Tài liệu "Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán" Tài liệu "Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán" Tác giả Nguyễn Phú Khánh, Võ Bá Quốc Cẩn và Trần Quốc Anh đã tạo ra một tài liệu đầy ý nghĩa và hữu ích dành cho những ai đang chuẩn bị cho kỳ thi Đại học môn Toán. Tài liệu này được scan từ sách gốc, có tổng cộng 271 trang, chứa đựng những kiến thức quý báu và kinh nghiệm thực tiễn trong việc giải các bài toán trong đề thi quốc gia hiện nay. Bằng việc nghiên cứu tài liệu này, bạn đọc sẽ được hướng dẫn cách trình bày bài toán một cách logic và hiệu quả, từ đó nâng cao khả năng làm bài thi của mình. Tác giả hy vọng rằng tài liệu sẽ giúp ích cho các thí sinh trong quá trình ôn tập và tự tin hơn khi đối diện với các bài toán khó khăn trong kỳ thi Đại học môn Toán.