Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thọ Xuân Thanh Hoá

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 8 môn Toán năm 2022 - 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Đề học sinh giỏi lớp 8 môn Toán năm 2022 - 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Sytu xin kính chào quý thầy cô và các em học sinh lớp 8. Chúng tôi muốn giới thiệu đến các bạn đề thi chọn học sinh giỏi môn Toán lớp 8 cấp huyện năm học 2022 - 2023 do phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá tổ chức. Kỳ thi sẽ diễn ra vào ngày 12 tháng 03 năm 2023. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ Đề học sinh giỏi Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Thọ Xuân - Thanh Hoá: An rời nhà để đến nhà Bích với vận tốc 4km/h. Bích cũng rời nhà để đến nhà An 20 phút sau với vận tốc 3 km/h. An và Bích gặp nhau trên đường và sau đó cùng đi về nhà Bích. Khi về đến nhà An, quãng đường An đã đi ra đúng bốn lần quãng đường Bích đã đi. Hỏi quãng đường từ nhà An đến nhà Bích là bao nhiêu? Cho hình vuông ABCD và điểm H thuộc cạnh BC. Trên nửa mặt phẳng bờ BC không chứa hình vuông ABCD dựng hình vuông CHIK. Chứng minh một số tính chất liên quan đến các đường và góc trong hình. Tìm các cặp số nguyên (x;y) thỏa mãn phương trình x2 - 4xy + 5y2 - 16 = 0. Chứng minh một mệnh đề về tính chia hết của số nguyên tố. File WORD hoàn chỉnh sẽ được cung cấp cho quý thầy cô để tham khảo. Mong rằng đề thi sẽ giúp các em học sinh lớp 8 rèn luyện kỹ năng và kiến thức môn Toán một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT Quảng Xương - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quảng Xương, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 27 tháng 01 năm 2024. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Quảng Xương – Thanh Hoá : + Chọn ngẫu nhiên hai số nguyên dương nhỏ hơn 13. Tính xác suất để hai số được chọn là hai số nguyên tố trong đó có một số chẵn và một số lẻ. + Cho a là số nguyên dương và b là ước nguyên dương của 2a2. Chứng minh rằng: a2 + b không là số chính phương. + Cho tam giác ABC vuông cân tại A. Trên cạnh BC lấy điểm M bất kì. Kẻ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Qua B kẻ đường thẳng (d1) song song với AC, qua C kẻ đường thẳng (d2) song song với AB. Gọi D là giao điểm của (d1) và (d2). 1. Chứng minh: tứ giác AEMF là hình chữ nhật và tổng EM/AC + FM/AB không phụ thuộc vào vị trí điểm M. 2. Gọi O là giao điểm của AM và EF, I là giao điểm của DE với BF. Chứng minh DE vuông góc với BF tại I và OI = OM. 3. Kí hiệu S1 là diện tích tam giác BEM; S2 là diện tích tam giác CFM. Xác định vị trí điểm M để S1, S2 lớn nhất.
Đề khảo sát HSG Toán 8 vòng 2 năm 2023 - 2024 phòng GDĐT Vũ Thư - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi môn Toán 8 cấp huyện vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Vũ Thư, tỉnh Thái Bình; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2023. Trích dẫn Đề khảo sát HSG Toán 8 vòng 2 năm 2023 – 2024 phòng GD&ĐT Vũ Thư – Thái Bình : + Đa thức f(x) chia cho (x + 1) dư 2, chia cho (x – 2) dư 5, chia cho (x + 1)(x – 2) thì thương là 5x – 1 và còn dư. Tính f(4). + Cho tam giác ABC vuông tại A, kẻ phân giác trong AD (D thuộc BC), gọi M, N lần lượt là hình chiếu của D trên AB và AC. BN cắt DM tại E, CM cắt DN tại F, gọi K là giao điểm của BN và CM. a/ Tứ giác AMDN là hình gì? Vì sao? b/ Chứng minh: AB AC. c/ Chứng minh: AK vuông góc BC. + Cho tam giác ABC có AB + AC = 2BC. Gọi I là giao điểm ba đường phân giác trong, G là trọng tâm của ABC (I khác G). Chứng minh rằng IG // BC.
Đề HSG Toán 8 vòng 2 năm 2023 - 2024 trường THCS Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán 8 vòng 2 năm học 2023 – 2024 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 09 tháng 12 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 8 vòng 2 năm 2023 – 2024 trường THCS Trần Mai Ninh – Thanh Hóa : + Với a, b là các số nguyên. Chứng minh rằng nếu 2 2 4a 3ab 11b chia hết cho 5 thì 4 4 a b chia hết cho 5. Tìm phần dư của phép chia đa thức P x cho (x 1 2). Biết rằng đa thức P x chia cho (x − 1) dư 7 và chia cho (x + 2) dư 1. + Cho hình vuông ABCD. Vẽ tam giác AEB đều nằm trong hình vuông. Đường thẳng AE cắt BD ở F, DE cắt FC ở K. Chứng minh rằng: a) Tam giác DFE cân. b) K là trung điểm của CF. + Cho tam giác IHK cân ở I đường cao IM. Trên tia đối của HM vẽ N sao cho H là trung điểm của MN. Vẽ MP vuông góc với IH. Gọi Q là trung điểm của IP. Chứng minh rằng: NP vuông góc với QM.
Đề HSG Toán 8 vòng 1 năm 2023 - 2024 trường THCS Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán 8 vòng 1 năm học 2023 – 2024 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 02 tháng 12 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 8 vòng 1 năm 2023 – 2024 trường THCS Trần Mai Ninh – Thanh Hóa : + Tìm số tự nhiên n để B = n3 – n2 – 7n + 10 là số nguyên tố. Tìm n nguyên để C = n4 + 2n3 + 2n2 + n +7 là số chính phương. + Cho tam giác ABC vuông tại A, O là trung điểm của BC. Vẽ tia Bx vuông góc với BC (Bx cùng phía với điểm A đối với đường thẳng BC). Qua A vẽ đường thẳng vuông góc với AO cắt Bx ở M. Đường thẳng qua O và song song với AB cắt AM ở D, AC ở F. Đường thẳng MO cắt AB ở E. a) Chứng minh rằng: EF = AO. b) BD cắt CM ở I. Chứng minh rằng: Ba điểm E, I, F thẳng hàng. + Cho tam giác MNP có MN = 5cm, MP = 6cm, NP = 7cm. Gọi I là giao điểm của ba đường phân giác, G là trọng tâm của tam giác MNP. Chứng minh rằng: IG // MP.