Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Đinh Tiên Hoàng TP HCM

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Đinh Tiên Hoàng TP HCM Bản PDF Đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường Đinh Tiên Hoàng – TP HCM gồm 30 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường Đinh Tiên Hoàng – TP HCM : + Trên giá sách có 18 quyển sách khác nhau gồm 10 quyển sách Toán và 8 quyển sách Văn. Lấy ngẫu nhiên 5 quyển sách. Tính xác suất sao cho: a) Trong 5 quyển sách được chọn có đúng 2 quyển sách Toán. b) Trong 5 quyển sách được chọn có ít nhất 3 quyển sách Văn. c) Trong 5 quyển có cả hai loại Toán và Văn. + Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành tâm O. Gọi I, J, K lần lượt là trung điểm của SA, SB, BC. a) Tìm giao tuyến của (SAK) và (SBD); (SAB) và (SDC). b) Chứng minh OI // (SDC) và OJ // (SAD). c) M là một điểm thuộc cạnh SC. Tìm giao điểm của AM với (SBD). d) Tìm thiết diện của mặt phẳng (P) với hình chóp S.ABCD biết (P) đi qua O và song song AD và SC? + Cho cấp số cộng (un) biết u3 + u5 – u2 = 17 và u4 + u7 – u6 = 14. Tìm số hạng đầu tiên u1; công sai d; số hạng thứ 39 và tổng của 58 số hạng đầu tiên của cấp số cộng trên. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HKI Toán 11 không chuyên năm học 2017 - 2018 trường Phổ Thông Năng Khiếu - TP. HCM
Đề thi HKI Toán 11 không chuyên năm học 2017 – 2018 trường Phổ Thông Năng Khiếu – TP. HCM gồm 6 bài toán tự luận, thời gian làm bài 90 phút.
Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Hoài Đức A - Hà Nội
Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Hoài Đức A – Hà Nội gồm 20 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I, J lần lượt là trọng tâm tam giác SCD và tam giác SAB. Chọn kết quả sai: A. Thiết diện tạo bởi mặt phẳng (ABI) và hình chóp S.ABCD là hình bình hành B. Đường thẳng IJ song song với mặt phẳng (SCB) C. Giao điểm của đường thẳng IJ và mặt phẳng (SAC) là giao điểm của đường thẳng IJ và đường thẳng SO D. Đường thẳng IJ song song với mặt phẳng (ABCD) [ads] + Một hộp chứa 12 viên bi, trong đó có năm viên bi màu đỏ được đánh số từ 1 đến 5, bốn viên bi màu vàng được đánh số từ 1 đến 4, ba viên bi màu xanh được đánh số từ 1 đến 3. Lấy ngẫu nhiên đồng thời 2 viên bi từ hộp. Tính xác suất để 2 bi lấy được vừa khác màu vừa khác số. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm các cạnh AB và SD. a) Tìm giao tuyến của mặt phẳng (SAC) và mặt phẳng (SDM). Tìm giao điểm H của đường thẳng SA và mặt phẳng (MNC) b) Chứng minh các đường thẳng CM, AD, HN đồng quy c) Chứng minh đường thẳng MN song song với (SBC) Bạn đọc có thể thường xuyên theo dõi các đề thi HK1 Toán 11 cập nhật thường xuyên tại đây.
Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Ân Thi - Hưng Yên
Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Ân Thi – Hưng Yên gồm 20 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 11 : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SA, P là điểm trên cạnh SD sao cho 3.SP = PD. a) Tìm giao điểm I của MP với mặt phẳng (ABCD). b) Tìm giao tuyến của hai mặt phẳng (MPC) và (SAB). c) Gọi Q là giao điểm của AB và (MPC), tính tỉ số QA/QB. [ads] + Trong không gian, các yếu tố nào sau đây xác định một mặt phẳng duy nhất? A. Hai đường thẳng cắt nhau. B. Ba điểm phân biệt. C. Một điểm và một đường thẳng. D. Bốn điểm không đồng phẳng. + Từ một hộp có 6 viên bi màu xanh khác nhau và 7 viên bi màu đỏ khác nhau, lấy ngẫu nhiên 5 viên bi. Tính xác suất sao cho: a) Lấy được 2 viên bi màu xanh và 3 viên bi màu đỏ. b) Lấy được nhiều nhất 2 viên bi màu xanh.
Đề thi học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT chuyên Đại học Sư Phạm Hà Nội
Đề thi học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT chuyên Đại học Sư Phạm Hà Nội gồm 4 trang với 20 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề thi HK1 : + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB. AC. E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là: a. Tam giác MNE b. Tứ giác MNEF với F là điểm bất kỳ trên cạnh BD c. Hình bình hành MNEF với F là điểm trên cạnh BD mà EF // BC d. Hình thang MNEF với F là điểm trên cạnh BD mà EF // BC [ads] + Dãy số (un) có un = n/(n + 1) là dãy số: A. Dãy số tăng B. Dãy số giảm C. Dãy số không tăng, không giảm D. Dãy số không bị chặn + Trong mặt phẳng, cho 6 điểm phân biệt sao cho không có 3 điểm nào thẳng hàng. Hỏi có thể lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập điểm đã cho. A. 6^3   B. 3^6 C. 6A3   D. 6C3