Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Đà Nẵng

Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Đà Nẵng Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Đà Nẵng Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Đà Nẵng Vào ngày thi, học sinh sẽ phải làm bài thi môn Toán trong thời gian 120 phút. Đề thi bao gồm 5 bài toán dạng tự luận, với đáp án và lời giải chi tiết được cung cấp sau khi kết thúc bài thi. Một trong những bài toán trong đề thi là về việc tính quãng đường của một người đi xe đạp từ điểm A đến điểm B và trở lại. Bài toán đòi hỏi học sinh tìm ra vận tốc khi lên dốc và xuống dốc, sau đó dựa vào thời gian trên để tính toán quãng đường AB. Bài toán khác đưa ra một bài toán về tam giác nội tiếp trong đường tròn, yêu cầu học sinh chứng minh các tính chất và tìm diện tích của tam giác. Các phần bài toán được thiết kế để thách thức tư duy logic và khả năng giải quyết vấn đề của thí sinh. Các bài toán trong đề thi không chỉ giúp học sinh ôn tập kiến thức môn Toán mà còn giúp phát triển kỹ năng phân tích, logic và giải quyết vấn đề của học sinh. Đây là cơ hội để các thí sinh thể hiện khả năng và kiến thức của mình trong môn học này.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Long An
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Long An tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Long An. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Long An, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Long An : + Trong mặt phẳng tọa độ Oxy, cho Parabol (P): y = 2x^2 và đường thẳng (d): y = 2x + 4. 1. Vẽ Parabol (P) và đường thẳng (d) trên cùng một mặt phẳng tọa độ Oxy. 2.Tìm tọa độ giao điểm của Parabol (P) và đường thẳng (d) bằng phép tính. 3. Viết phương trình đường thẳng (d’): y = ax + b. Biết rằng (d’) song song với (d) và (d1) và đi qua điểm N(2;3). [ads] + Cho phương trình (ẩn x): x^2 – 6x + m = 0. a) Tìm giá trị m để phương trình có hai nghiệm phân biệt x1, x2. b) Tìm giá trị m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện x1^2 – x2^2 = 12. + Cho tam giác ABC vuông tại A có đường cao AH, biết AB = 5cm, BH = 3cm. Tính AH, AC và sinCAH.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Lào Cai
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lào Cai tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Lào Cai. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Lào Cai, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Lào Cai : + Cho đường tròn (O), điểm M nằm ngoài đường tròn (O), kẻ hai tiếp tuyến MB, MC (B và C là các tiếp điểm) với đường tròn. Trên cung lớn BC lấy điểm A sao cho AB < AC. Từ điểm M kẻ đường thẳng song song với AB, đường thẳng này cắt đường tròn (O) tại D và E (MD < ME), cắt BC tại F, cắt AC tại I. a) Chứng minh tứ giác MBOC nội tiếp. b) Chứng minh FD.FE = FB.FC, FI > FE = FD.FE. c) Đường thẳng OI cắt đường tròn (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt đường tròn (O) tại K (K khác Q). Chứng minh 3 điểm P, K, M thẳng hàng. [ads] + Cho đường thẳng (d): y = x – 1 và parabol (P): y = 3x^2. a) Tìm tọa độ A thuộc parabol (P) biết điểm A có hoành độ x = -1. b) Tìm b để đường thẳng (d) và đường thẳng (d’): y = 1/2.x + b cắt nhau tại một điểm trên trục hoành. + Tìm các giá trị của tham số m để phương trình x^2 – 2(m – 1)x + m^2 = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức (x1 – x2)^2 + 6m = x1 – 2×2.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Lai Châu
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lai Châu tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Lai Châu. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Lai Châu, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Lai Châu : + Quãng đường AB dài 60km, một người đi xe đạp từ A đến B với vận tốc và thời gian quy định. Sau khi đi được nửa quãng đường người đó giảm vận tốc 5km/h trên nửa quãng đường còn lại. Vì vậy, người đó đã đến B chậm hơn quy định 1 giờ. Tính vận tốc và thời gian quy định của người đó. [ads] + Giải phương trình và hệ phương trình sau: a) x^2 – 6x + 5 = 0. b) x + y = 2 và 2x – y = 1. + Cho phương trình: 2x^2 + (2m – 1)x + m – 1 = 0 trong đó m là tham số. a) Giải phương trình khi m = 2 . b) Tìm m để phương trình có hai ngiệm thỏa mãn: 4×1^2 + 4×2^2 + 2x1x2 = 1.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Lâm Đồng
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Lâm Đồng. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Lâm Đồng, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Lâm Đồng : + Trong lễ phát động phong trào trồng cây nhân dịp kỷ niệm ngày sinh Bác Hồ, lớp 9A được giao trồng 360 cây. Khi thực hiện có 4 bạn được điều đi làm việc khác, nên mỗi học sinh còn lại phải trồng thêm một cây so với dự định. Hỏi lớp 9A có bao nhiêu học sinh? (Biết số cây trồng của mỗi học sinh như nhau). [ads] + Từ điểm A nằm ngoài đường tròn (O), vẽ tiếp tuyến AB (B là tiếp điểm) và cát tuyến ACD không đi qua tâm O (C nằm giữa A và D). Gọi E là trung điểm của CD. Chứng minh rằng ABOE là tứ giác nội tiếp. + Cho △ABC nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB). Tia FE cắt đường tròn tại M. Chứng minh AM^2 = AH.AD.