Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường THPT chuyên Bắc Giang

Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên Bắc Giang gồm có 01 trang với 05 bài toán, đề được biên soạn theo dạng đề tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được tổ chức vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên Bắc Giang : + Cho parabol (P) : y = x2 và đường thẳng (d): y = −mx + 2 − m (m là tham số). Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho biểu thức T = 1/(x1 + 1)^4 + 1/(x2 + 1)^4 đạt giá trị nhỏ nhất. + Trong mặt phẳng cho 2020 điểm phân biệt sao cho từ ba điểm bất kỳ luôn chọn ra được hai điểm có khoảng cách nhỏ hơn 1cm. Chứng minh rằng tồn tại một hình tròn có bán kính bằng 1cm chứa không ít hơn 1010 điểm trong 2020 điểm đã cho. + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O. Các đường cao AD, BE và CF của tam giác ABC đồng quy tại H. Gọi M là trung điểm của đoạn thẳng BC, K là giao điểm của hai đường thẳng BC và EF. 1. Chứng minh rằng KB.KC = KE.KF và H là tâm đường tròn nội tiếp của tam giác DEF. 2. Qua điểm F kẻ đường thẳng song song với đường thẳng AC, đường thẳng này cắt các đường thẳng AK, AD lần lượt tại P và Q. Chứng minh FP = FQ. 3. Chứng minh rằng đường thẳng HK vuông góc với đường thẳng AM.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập 50 đề luyện thi tuyển sinh lớp 10 THPT sở GDĐT Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh tài liệu tuyển tập 50 đề thi đại trà – toán chung (toán điều kiện) theo motip đề thi tuyển sinh vào lớp 10 THPT sở Giáo dục và Đào tạo tỉnh Thái Bình, tài liệu được biên soạn bởi thầy Lương Tuấn Đức. Đề thi tuyển sinh lớp 10 THPT có nội dung chương trình chủ yếu trong phạm vi lớp 9 THCS, kết hợp tổng hòa các kiến thức cơ bản từ các lớp 6, 7, 8, 9, cụ thể các nội dung chính được đề cập như sau: 1. Rút gọn căn thức và các bài toán liên quan. 2. Giải, biện luận hệ phương trình bậc nhất một ẩn và các bài toán liên quan. 3. Hàm số bậc nhất và đồ thị hàm số bậc nhất (đường thẳng) và các bài toán liên quan. Bài toán là tiền thân của hình học giải tích cấp THPT. 4. Phương trình bậc hai và các bài toán liên quan. Hệ thức Viet và các đẳng thức, bất đẳng thức chế tác xuất phát từ hệ thức Viet. 5. Parabol đơn giản và các bài toán liên quan. 6. Bài toán hình học tổng hợp. 7. Bài toán phân loại thí sinh giỏi, năng khiếu. [ads] Đối với đề thi tuyển sinh Toán chung (Toán điều kiện), kỳ thi tuyển sinh THPT Chuyên tại các tỉnh miền Bắc và một số trường chuyên khác, cấu trúc đề thi tương tự đề thi đại trà nhưng mức độ nâng cao hơn, đặc thù là bài toán phương trình – hệ phương trình không mẫu mực sẽ lồng ghép chốt chặn tại giữa bài thi, mục đích lựa chọn được các em học sinh ưu tú hơn, dù rằng các bài toán hình học và bài toán phân loại cuối cùng vẫn là bắt buộc. Tài liệu tuyển tập 50 đề thi dưới đây được làm hoàn toàn mới so với các đề thi tuyển sinh trước đây, cấu trúc không thay đổi, có đề phòng một số kiến thức vô tình bị lãng quên, xem nhẹ trong chương trình lớp 9 THCS.
Đề minh họa Toán tuyển sinh lớp 10 năm 2019 - 2020 sở GDĐT Khánh Hòa
Vừa qua, sở Giáo dục và Đào tạo tỉnh Khánh Hòa đã công bố đề minh họa kỳ thi tuyển sinh vào lớp 10 năm học 2019 – 2020 môn Toán, đề được biên soạn theo cấu trúc tương tự đề các năm học trước, đề gồm 01 trang với 05 bài toán tự luận, học sinh làm bài trong thời gian 120 phút. Trích dẫn đề minh họa Toán tuyển sinh lớp 10 năm 2019 – 2020 sở GD&ĐT Khánh Hòa : + Trên mặt phẳng tọa độ Oxy, cho điểm A(3;-2) và đường thẳng d có phương trình y = x – m với m là tham số. a) Tìm m để điểm N thuộc đường thẳng d. b) Với m tìm được, xác định tọa độ giao điểm của đường thẳng d và parabol (P) có phương trình y = -4x^2. [ads] + Cho AB và CD là hai đường kính khác nhau của đường tròn (O;R). Đường thẳng vuông góc với AB tại A cắt các đường thẳng BC, BD lần lượt tại E và F. a) Chứng minh góc BAD = BFA. b) Chứng minh tứ giác CDEF là tứ giác nội tiếp. c) Gọi I, J lần lượt là trung điểm của các đoạn thẳng AE, AF và H là trực tâm của tam giác BIJ. Tính độ dài đoạn thẳng AH theo R.
Đề tuyển sinh vào 10 môn Toán năm 2018 - 2019 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 07 tháng 07 năm 2018; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề tuyển sinh vào 10 chuyên môn Toán chuyên năm 2018 - 2019 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 chuyên môn Toán chuyên năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2018; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.