Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT 2024 môn Toán đợt 2 sở GDĐT Thái Nguyên

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 môn Toán đợt 2 sở Giáo dục và Đào tạo tỉnh Thái Nguyên; đề thi có đáp án trắc nghiệm mã đề 101 – 102 – 103 – 104 – 105 – 106 – 107 – 108 – 109 – 110 – 111 – 112 – 113 – 114 – 115 – 116 – 117 – 118 – 119 – 120 – 121 – 122 – 123 – 124. Trích dẫn Đề thi thử tốt nghiệp THPT 2024 môn Toán đợt 2 sở GD&ĐT Thái Nguyên : + Cho khối chóp S.ABC có mặt phẳng (SAC) vuông góc với mặt phẳng (ABC), tam giác SAB là tam giác đều cạnh a, BC = a. Đường thẳng SC tạo với mặt phẳng (ABC) một góc 60°. Thể tích khối chóp S.ABC bằng? + Trong lễ bàn giao công trình của một công ty xây dựng cầu đường, công ty thiết kế một cổng chào bằng phao chứa không khí ở bên trong, có hình dạng như một nửa cái săm ô tô khi bơm căng. Cổng chào có chiều cao so với mặt đường là 7m (tham khảo hình vẽ), phần chân của cổng chào tiếp xúc với mặt đường theo một hình tròn có đường kính là 2m. Nếu bỏ qua độ dày của lớp vỏ cổng chào, mặt đường coi là bằng phẳng thì thể tích không khí chứa bên trong cổng chào bằng? + Trong không gian Oxyz, cho mặt phẳng (P): x + y – z + 2 = 0 và A(3;4;1), B(7;-4;-3). Điểm M(a;b;c) nằm trên (P) với a > 2 sao cho tam giác ABM vuông tại M và có diện tích nhỏ nhất. Biểu thức T = a + b + c có giá trị bằng?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra khảo sát Toán 12 năm 2021 - 2022 sở GDĐT Bình Thuận
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra khảo sát môn Toán 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bình Thuận (mã đề 021), nhằm giúp các em rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT 2022 môn Toán do Bộ Giáo dục và Đào tạo tổ chức. Trích dẫn đề kiểm tra khảo sát Toán 12 năm 2021 – 2022 sở GD&ĐT Bình Thuận : + Diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = x3 + 2×2 – 2mx – 1 (m là tham số) và y = x3 + x2 + 3 đạt giá trị nhỏ nhất bằng? + Trong không gian Oxyz, cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; AD = 2AB = 2BC và SC vuông góc với mặt phẳng (ABCD). Nếu A(3;0;0), D(0;3;0), S(0;0;3) và C có hoành độ dương thì tung độ của B bằng? + Cho khối trụ (T) có bán kính R và chiều cao h = R2. Gọi A và B là hai điểm lần lượt thuộc hai đường tròn đáy của (T). Nếu góc và khoảng cách giữa đường thẳng AB và trục của (T) lần lượt là 45° và a thì thể tích của (T) bằng?
Đề khảo sát chất lượng Toán 12 năm 2021 - 2022 sở GDĐT Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND thành phố Hải Phòng (mã đề thi 112), nhằm giúp các em rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm 2022 sắp tới; kỳ thi được diễn ra vào thứ Ba ngày 24 tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Trong không gian Oxyz, cho điểm A(13;–7;–13), B(1;–1;5) và C(1;1;–3). Xét các mặt phẳng (P) đi qua C sao cho A và B nằm cùng phía so với (P). Khi d(A;(P)) + 2d(B;(P)) đạt giá trị lớn nhất thì (P) có dạng ax + by + cz + 3 = 0. Giá trị của a + b + c bằng? + Gọi (H) là hình phẳng giới hạn bởi các đường y = (x − 3)2, trục tung và trục hoành. Gọi k1, k2 (k1 > k2) là hệ số góc của hai đường thẳng cùng đi qua điểm A(0;9) và chia (H) làm ba phần có diện tích bằng nhau. Tính k1 – k2. + Cho hàm số y = f(x) có đạo hàm trên R và f'(x) = (x + 1)(x − 2). Tính tổng tất cả các giá trị nguyên của m để hàm số y = f(|2×3 − 3×2 − 12x + m|) có nhiều điểm cực trị nhất.
Đề kiểm tra đánh giá Toán 12 năm 2021 - 2022 sở GDĐT Bắc Kạn
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra đánh giá kết quả ôn tập của học sinh lớp 12 môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bắc Kạn; kỳ thi được diễn ra vào ngày 23 tháng 05 năm 2022; nhằm mục đích chuẩn bị cho kỳ thi tốt nghiệp THPT năm 2022 sắp tới. Trích dẫn đề kiểm tra đánh giá Toán 12 năm 2021 – 2022 sở GD&ĐT Bắc Kạn : + Trong không gian Oxyz cho điểm M(1;2;3). Mặt phẳng (P) đi qua M cắt các trục tọa độ Ox; Oy; Oz lần lượt tạiA; B; C sao cho M là trọng tâm của tam giác ABC. Phương trình mặt phẳng (P) là? + Cho hai mặt phẳng (P); (Q) song song với nhau và cùng cắt khối cầu tâm O, bán kính R = 2a thành hai hình tròn cùng bán kính. Xét hình nón có đỉnh trùng với tâm của một trong hai hình tròn này và có đáy là hình tròn còn lại. Khoảng cách h giữa hai mặt phẳng (P) và (Q) để diện tích xung quanh của hình nón là lớn nhất là? + Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt cầu (S1): x2 + y2 + z2 = 1, (S2): x2 + (y – 4)2 + z2 = 4 và các điểm A(4;0;0), B(1/4,0,0), C(1;4;0), D(4;4;0). Gọi M là điểm thay đổi trên (S1), N là điểm thay đổi trên(S2). Giá trị nhỏ nhất của MA + 2ND + 4MN + 4BC là?
Đề khảo sát chất lượng Toán 12 THPT năm 2021 - 2022 sở GDĐT Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thái Bình; kỳ thi nhằm kiểm tra kiến thức đối với học sinh lớp 12 trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông năm 2022 môn Toán. Trích dẫn đề khảo sát chất lượng Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Thái Bình : + Trong không gian Oxyz, cho mặt cầu (S): (x − 1)2 + (y + 2)2 + (z – 3)2 = 27. Gọi (a) là mặt phẳng đi qua hai điểm A(0;0;–4); B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S) và đáy là đường tròn (C) có thể tích lớn nhất. Biết rằng (a): ax + by − z + c = 0. Khi đó a − b + c bằng? + Trên tập hợp các số phức, xét phương trình z2 – 2mz + 3m + 10 = 0 (m là tham số thực). Có bao nhiêu giá trị nguyên của m để phương trình đó có hai nghiệm z1 và z2 không phải số thực thỏa mãn |z1| + |z2| =< 8? + Cho a và b là hai số thay đổi thoả mãn a > 1; b > 1 và a + b = 12. Giả sử x1; x2 là hai nghiệm của phương trình: logax.logbx − logax − logbx − 1 = 0. Giá trị lớn nhất của biểu thức P = x1.x2 là?