Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG huyện Toán 8 năm 2022 - 2023 phòng GDĐT Bình Giang - Hải Dương

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Giang, tỉnh Hải Dương; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 120 phút, đề bài gồm 01 trang; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi HSG huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Bình Giang – Hải Dương : + Phân tích đa thức sau thành nhân tử: x5 + x3 + x. Cho đa thức 432 Px x x x b ax và 2 Qx x x 2. Tìm a và b để đa thức P(x) chia hết cho đa thức Q(x). + Cho biểu thức: 3 22 2 x x B. Tìm x để biểu thức B xác định rồi rút gọn biểu thức. Chứng tỏ rằng với mọi số nguyên a, b thì 3 3 M a b ab chia hết cho 6. + Cho tam giác ABC nhọn, ba đường cao AD, BE, CF đồng quy tại H 1) Chứng minh: Tam giác AEF đồng dạng với tam giác ABC 2) Gọi K là giao điểm của AD và EF. Chứng minh: H là giao điểm ba đường phân giác trong tam giác DEF và HK.AD = AK.DH 3) Giả sử SAEF = SBFD = SCDE. Chứng minh tam giác ABC đều.

Nguồn: toanmath.com

Đọc Sách

Đề HSG cấp huyện Toán 8 năm 2023 - 2024 phòng GDĐT Nam Trực - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nam Trực, tỉnh Nam Định; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG cấp huyện Toán 8 năm 2023 – 2024 phòng GD&ĐT Nam Trực – Nam Định : + Cho tam giác ABC nhọn (AB AC) có đường cao AH và BK cắt nhau tại D. Gọi M là trung điểm của AB P là điểm đối xứng với H qua M. a) Chứng minh AHBP là hình vuông. b) Chứng minh HP MK 2 và BHD AHC. c) Qua D kẻ đường thẳng vuông góc với AH tại D, qua C kẻ đường thẳng vuông góc với BC tại C, hai đường thẳng này cắt nhau tại Q. Chứng minh P K Q thẳng hàng. + Tìm đa thức dư khi chia đa thức P x cho đa thức 2 x 1 biết đa thức P x chia cho x 1 được dư là 4 và khi chia cho 2 x 1 được dư là 3 5 x. Cho x y là các số thực thỏa mãn x y 1. Tìm giá trị nhỏ nhất của biểu thức 2 2 C x y y x xy 4 4 8. + Lấy 2020 điểm thuộc miền trong của một tứ giác để cùng với 4 đỉnh ta được 2024 điểm, trong đó không có 3 điểm nào thẳng hàng. Biết diện tích của tứ giác ban đầu là 1 2 cm. Chứng minh rằng tồn tại một tam giác có 3 đỉnh lấy từ 2024 điểm đã cho có diện tích không vượt quá 1 2 4042 cm.
Đề khảo sát HSG Toán 8 năm 2023 - 2024 phòng GDĐT Hải Hậu - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hải Hậu, tỉnh Nam Định.
Đề học sinh giỏi Toán 8 năm 2023 - 2024 trường THCS Phúc Thọ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi môn Toán 8 năm học 2023 – 2024 trường THCS Phúc Thọ, huyện Nghi Lộc, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 trường THCS Phúc Thọ – Nghệ An : + Cho a, b, c là các số nguyên thoả mãn 3 a b 2024c c. Chứng minh rằng: 333 abc chia hết cho 6. + Cho hình vuông ABCD trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM = BN = CP = DQ. a) Chứng minh MNPQ hình vuông. b) Tìm vị trí của M, N, P, Q để diện tích tứ giác MNPQ đạt giá trị nhỏ nhất. Cho tam giác ABC (AB < AC), M là trung điểm của BC. Một đường thẳng qua M và song song với phân giác của góc BAC cắt AC, AB lần lượt tại E, F. Chứng minh CE = BF. + Cho các số nguyên dương a và b thoả mãn 2 2 S a b ab a b 3 2023 chia hết cho 5. Tìm số dư khi chia a – b cho 5.
Đề học sinh giỏi huyện Toán 8 năm 2023 - 2024 phòng GDĐT Nga Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nga Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 10 tháng 11 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2023 – 2024 phòng GD&ĐT Nga Sơn – Thanh Hóa : + Cho a, b, c là các số hữu tỷ thỏa mãn điều kiện ab + bc + ca = 1. Chứng minh rằng giá trị biểu thức Q = (a2 + 1)(b2 + 1)(c2 + 1) là bình phương của một số hữu tỷ. + Cho các số nguyên a, b, c thỏa mãn 2a + b, 2b + c, 2c + a đều là các số chính phương. Biết rằng một trong ba số chính phương trên chia hết cho 3. Chứng minh rằng: P = (a − b)3 + (b − c)3 + (c − a)3 chia hết cho 81. + Cho hình chữ nhật ABCD có BDC = 30°. Qua C vẽ đường thẳng vuông góc với BD, cắt BD ở E và cắt tia phân giác của ADB ở M. a. Chứng minh rằng tứ giác AMBD là hình thang cân. b. Gọi N là hình chiếu của M trên DA, K là hình chiếu của M trên AB. Chứng minh rằng ba điểm N, K, E thẳng hàng.