Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Cần Thơ

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Cần Thơ Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Cần Thơ Đề tuyển sinh môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Cần Thơ Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 - 2024 của sở Giáo dục và Đào tạo thành phố Cần Thơ. Kỳ thi sẽ diễn ra vào ngày 05 tháng 06 năm 2023. Trích dẫn câu hỏi từ Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Cần Thơ: 1. Một bình chứa nước có dạng hình nón và mực nước trong bình cách đỉnh 8 cm (minh họa như Hình 1). Khi đảo ngược bình lại thì phần không gian trống của bình có chiều cao 2 cm (minh họa như Hình 2). Hãy tính chiều cao của bình. 2. Cho hình bình hành ABCD có CB = CA. Gọi M là điểm bất kỳ trên tia đối của tia BA. Đường tròn ngoại tiếp tam giác ACD cắt đường thẳng MD tại điểm N (N khác D), đường tròn ngoại tiếp tam giác AMN cắt đường thẳng MC tại điểm K (K khác M). a) Chứng minh tứ giác ABKC nội tiếp. b) Gọi I là giao điểm của đường thẳng AN và đường thẳng BK. Chứng minh I luôn thuộc một đường thẳng cố định khi M thay đổi. 3. Cho bảng ô vuông có kích thước 4x4 như sau: Mỗi ô trong bảng này được viết một số nguyên dương sao cho 16 số trên bảng đôi một khác nhau và trong mỗi hàng, mỗi cột luôn tồn tại một số bằng tổng của ba số còn lại tương ứng trong hàng, trong cột đó. Gọi M là số lớn nhất trong bảng. Tìm giá trị nhỏ nhất của M. Chúc quý thầy cô và các em học sinh có kỳ thi thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử lần 1 vào 10 môn Toán năm 2020 - 2021 phòng GDĐT Hải Hậu - Nam Định
Ngày … tháng 06 năm 2020, phòng Giáo dục và Đào tạo huyện Hải Hậu, tỉnh Nam Định tổ chức kỳ thi thử tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021 lần thi thứ nhất. Đề thi thử lần 1 vào 10 môn Toán năm 2020 – 2021 phòng GD&ĐT Hải Hậu – Nam Định gồm 01 trang với 02 phần: phần trắc nghiệm gồm 08 câu, chiếm 2,0 điểm, phần tự luận gồm 05 câu, chiếm 8,0 điểm, thời gian làm bài 120 phút. Trích dẫn đề thi thử lần 1 vào 10 môn Toán năm 2020 – 2021 phòng GD&ĐT Hải Hậu – Nam Định : + Muốn tính khoảng cách từ điểm A đến điểm B nằm bên kia bờ sông, người ta vạch từ A đường vuông góc với AB. Trên đường vuông góc này lấy vị trí C sao cho AC = 30m, rồi vạch CD vuông góc với phương BC cắt AB tại D (như hình vẽ). Đo AD = 20m. Khi đó khoảng cách từ A đến B là? + Một hình nón có bán kính đáy là R (cm), diện tích xung quanh bằng hai lần diện tích đáy của nó. Khi đó thể tích hình nón bằng? [ads] + Cho tam giác ABC (AB < AC) nhọn nội tiếp đường tròn (O). Tia phân giác của góc BAC cắt BC và đường tròn (O) thứ tự tại D và E. Kẻ đường kính EF của đường tròn (O) cắt BC tại M. 1) Chứng minh: EC^2 = EA.ED và tứ giác ADMF nội tiếp. 2) Tia phân giác của góc ABC cắt AD và AF thứ tự tại K và P, CK cắt FA tại Q. Đường thẳng QB và PC cắt nhau tại I. Chứng minh: a) KB.KP = KC.KQ. b) Ba điểm A, D, I thẳng hàng.
Đề thi thử vào 10 năm 2020 - 2021 môn Toán trường Khánh Hòa - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT năm học 2020 – 2021 môn Toán trường THPT Khánh Hòa, tỉnh Thái Nguyên; đề thi gồm có 01 trang với 10 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử vào 10 năm 2020 – 2021 môn Toán trường Khánh Hòa – Thái Nguyên : + Người ta hòa lẫn 4kg chất lỏng I với 3kg chất lỏng II thì được một hỗn hợp có khối lượng riêng 700 kg/m3. Biết rằng khối lượng riêng của chất lỏng I lớn hơn khối lượng riêng của chất lỏng II là 200 kg/m3. Tính khối lượng riêng của mỗi chất lỏng. + Cho đường tròn (O) có hai đường kính AB, CD vuông góc với nhau. Gọi M là điểm tùy ý thuộc đoạn OC (M khác O và C). Tia BM cắt đường tròn (O) tại N . 1) Chứng minh AOMN là một tứ giác nội tiếp. 2) Chứng minh ND là tia phân giác của tam giác ANB. + Cho hàm số y = (3m – 2)x – 1 + m (m là tham số). 1) Tìm m để hàm số đồng biến trên R. 2) Tìm m để đồ thị hàm số cắt hai trục tọa độ Ox, Oy lần lượt tại A, B.
Đề thi thử vào 10 năm 2020 - 2021 môn Toán trường Ngô Quyền - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT năm học 2020 – 2021 môn Toán trường THPT Ngô Quyền, tỉnh Thái Nguyên; đề thi gồm có 01 trang với 10 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử vào 10 năm 2020 – 2021 môn Toán trường Ngô Quyền – Thái Nguyên : + Cho hình vuông ABCD có cạnh là 2 cm. Đường tròn tâm O ngoại tiếp hình vuông. Tính diện tích hình tròn tâm O? [ads] + Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Qua A vẽ hai cát tuyến CAD và EAF (C, E thuộc (O); D, F thuộc (O’)). Đường thẳng CE cắt đường thẳng DF tại P. Chứng minh tứ giác BEPF nội tiếp. + Cho tam giác ABC nhọn nội tiếp đường tròn (O), gọi BD, CE là các đường cao của tam giác ABC. Chứng minh OA vuông góc DE.
Đề thi thử vào 10 năm 2020 - 2021 môn Toán trường Gang Thép - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT năm học 2020 – 2021 môn Toán trường THPT Gang Thép, tỉnh Thái Nguyên; đề thi gồm có 01 trang với 10 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử vào 10 năm 2020 – 2021 môn Toán trường Gang Thép – Thái Nguyên : + Trên một vùng biển được xem như bằng phẳng và không có chướng ngại vật, vào lúc 6 giờ có một tàu cá đi thẳng qua tọa độ X theo hướng Từ Nam đến Bắc với vận tốc không đổi. Đến 7 giờ cùng ngày một tàu du lịch cũng đi thẳng qua tọa độ X theo hướng từ Đông sang Tây với vận tốc lớn hơn vận tốc tàu cá 12 km/h. Đến 8 giờ cùng ngày, khoảng cách giữa hai tàu là 60 km. Tính vận tốc của mỗi tàu. + Cho hai đường tròn (O1, R1) và (O2, R2) tiếp xúc ngoài tại E. Vẽ tiếp tuyến chung ngoài MN của hai đường tròn (M∈(O1); N∈(O2)), vẽ tiếp tuyến chung trong của hai đường tròn tại E cắt MN tại A. a) Chứng minh: tứ giác MAEO1 và tứ giác NAEO2 là các tứ giác nội tiếp. b) Tính MN theo R1, R2. [ads] + Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC, AB lần lượt tại D và E. H là giao điểm của BD và CE. K là giao điểm của DE và AH. F là giao điểm của AH và BC. M là trung điểm của AH. Chứng minh rằng: MA2 = MK.MF.