Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia môn Toán năm 2018 trường THPT Cổ Loa - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử THPT Quốc gia môn Toán năm 2018 trường THPT Cổ Loa – Hà Nội, đề có mã đề 101 gồm 6 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, yêu cầu học sinh hoàn thành bài làm trong thời gian 90 phút, đề nhằm giúp các em rèn luyện lại các dạng Toán 10, Toán 11 và Toán 12 đã học, tiếp xúc với các bài toán nâng cao thường có trong đề thi THPT để hướng đến kỳ thi THPT Quốc gia năm học 2018 – 2019. Trích dẫn đề thi thử THPT Quốc gia môn Toán năm 2018 trường THPT Cổ Loa – Hà Nội : + Khi sản xuất cái phễu hình nón (không có nắp) bằng nhôm, các nhà thiết kế luôn đặt mục tiêu sao cho chi phí nguyên liệu làm phễu là ít nhất, tức là diện tích xung quanh của hình nón là nhỏ nhất. Hỏi nếu ta muốn sản xuất cái phễu có thể tích là 2 dm3 thì diện tích xung quanh của cái phễu sẽ có giá trị nhỏ nhất gần với giá trị nào sau đây nhất? [ads] + Lớp 12A4 trường THPT Cổ Loa, Hà Nội có 36 học sinh. Hỏi giáo viên chủ nhiệm có bao nhiêu cách chọn 3 em học sinh của lớp 12A4 để phân một em làm lớp trưởng, một em làm lớp phó và một em làm bí thư? biết em nào trong lớp cũng có khả năng làm lớp trưởng hoặc lớp phó hoặc bí thư. + Nếu tăng kích thước hai cạnh của khối hộp chữ nhật lên 2 lần và giảm kích thước thứ ba 4 lần thì thể tích khối hộp thay đổi như thế nào? A. Thể tích không thay đổi. B. Thể tích tăng lên 4 lần. C. Thể tích giảm đi 4 lần. D. Thể tích tăng lên 8 lần.

Nguồn: toanmath.com

Đọc Sách

Phát triển các câu VD VDC đề tham khảo thi TN THPT 2022 môn Toán
Nội dung Phát triển các câu VD VDC đề tham khảo thi TN THPT 2022 môn Toán Bản PDF - Nội dung bài viết Phân tích chi tiết về tài liệu phát triển câu vận dụng trong đề thi tham khảo Toán THPT 2022 Phân tích chi tiết về tài liệu phát triển câu vận dụng trong đề thi tham khảo Toán THPT 2022 Tài liệu về Toán gồm 488 trang được biên soạn bởi thầy giáo Đặng Việt Đông, một giáo viên nổi tiếng tại trường THPT Nho Quan A, tỉnh Ninh Bình. Tài liệu này là nguồn tư liệu hữu ích để phát triển câu hỏi vận dụng và vận dụng cao trong đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2022 do Bộ Giáo dục và Đào tạo ban hành. Trong tài liệu, các câu hỏi được biên soạn kỹ lưỡng, có đáp án và lời giải chi tiết, giúp học sinh hiểu rõ từng bước giải quyết vấn đề. Bài tập và lời giải được chia thành từng phần riêng biệt, phù hợp với đối tượng học sinh khá - giỏi và muốn đạt điểm cao (từ 9 điểm trở lên) trong kỳ thi tốt nghiệp THPT 2022 môn Toán. Tài liệu này mang lại nhiều lợi ích cho học sinh, giúp họ rèn luyện kỹ năng vận dụng lý thuyết vào thực tế, nâng cao kiến thức và hiểu biết trong môn Toán. Đồng thời, cũng hỗ trợ các giáo viên trong việc giảng dạy và chuẩn bị cho các kỳ thi quan trọng của học sinh.
Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2022 môn Toán
Nội dung Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2022 môn Toán Bản PDF - Nội dung bài viết Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2022 môn Toán Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2022 môn Toán Tài liệu hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2022 môn Toán là tập sách gồm 98 trang, được biên soạn bởi tác giả Trần Minh Quang. Tài liệu tập trung vào việc hướng dẫn cách giải các bài toán vận dụng cao (VDC) trong các đề thi thử tốt nghiệp THPT năm 2022 môn Toán. Một trong những bài toán được trích dẫn từ tài liệu là bài toán về một bình thủy tinh hình trụ, trong đó người ta đổ nước và đặt lên miệng bình một khối lập phương đặc. Sau quá trình thử nghiệm, ta phải tính toán để xác định thể tích của bình thủy tinh. Bài toán khác liên quan đến việc tìm giá trị nhỏ nhất của biểu thức trong một hệ phương trình phức tạp. Ngoài ra, còn có bài toán liên quan đến tính thể tích của khối lăng trụ trong không gian. Tài liệu này cung cấp một cách tiếp cận chi tiết và cụ thể cho việc giải các bài toán VDC trong các đề thi thử TN THPT 2022 môn Toán. Với sự phong phú về nội dung và cách trình bày, tài liệu sẽ giúp học sinh nắm vững kỹ năng giải toán một cách chính xác và hiệu quả.