Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Tiên Du Bắc Ninh

Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Tiên Du Bắc Ninh Bản PDF - Nội dung bài viết Đề thi Đề học sinh giỏi huyện lớp 8 môn Toán năm học 2022 - 2023 phòng GD ĐT Tiên Du Bắc Ninh Đề thi Đề học sinh giỏi huyện lớp 8 môn Toán năm học 2022 - 2023 phòng GD ĐT Tiên Du Bắc Ninh Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh lớp 8 Đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 - 2023 của phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh. Đề thi được thiết kế với hình thức 100% tự luận, thời gian là 120 phút (không tính thời gian giao đề), bao gồm đáp án, lời giải chi tiết và thang chấm điểm. Kỳ thi sẽ diễn ra vào ngày 22 tháng 02 năm 2023. Đề thi bao gồm các câu hỏi sau: Cho hình chữ nhật ABCD (AB > 2BC), trên cạnh AB lấy điểm M sao cho BC = AM, trên tia CB lấy điểm N sao cho CN = BM, CM cắt AN tại P, trên cạnh CD lấy điểm E sao cho CE = CB. Câu hỏi yêu cầu chứng minh tứ giác AMCE là hình bình hành, chứng minh các tam giác ADE và ECN bằng nhau, chứng minh tứ giác AENF là hình vuông, và tính tỉ số diện tích của hai tam giác NKL và NEP. Thí sinh lựa chọn làm một trong hai câu sau: chứng minh rằng nếu 2n (với n là số nguyên dương) là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương, hoặc tìm giá trị nhỏ nhất và lớn nhất của biểu thức 2^6 + 2^3 + 1^x. Cho biểu thức A = 3^3 * 3^3 * ... * 2022^3 * 2023^3. Câu hỏi yêu cầu tìm số dư khi chia số A cho 3.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG cấp huyện lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Cẩm Xuyên Hà Tĩnh
Nội dung Đề thi HSG cấp huyện lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Cẩm Xuyên Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện Toán lớp 8 năm 2016 – 2017 phòng GD&ĐT Cẩm Xuyên – Hà Tĩnh Đề thi HSG cấp huyện Toán lớp 8 năm 2016 – 2017 phòng GD&ĐT Cẩm Xuyên – Hà Tĩnh Xin chào quý thầy cô và các em học sinh lớp 8! Dưới đây là đề thi HSG cấp huyện môn Toán lớp 8 năm 2016 – 2017 do phòng GD&ĐT Cẩm Xuyên – Hà Tĩnh biên soạn. Bạn hãy giải và phân tích bài toán sau đây cẩn thận nhé: Bài toán 1: Cho hình vuông ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và tia CB cắt nhau ở K. Kẻ đường thẳng qua D vuông góc với DI. Đường thẳng này cắt đường thẳng BC tại Q. E là trung điểm của IQ, tia DE cắt BC tại F. Qua I vẽ đường thẳng song song với AD cắt DF tại H. Chứng minh rằng: a) Tứ giác IHQF là hình thoi. b) Tổng 1/DI2 + 1/DK2 không đổi khi I thay đổi trên cạnh AB. Bài toán 2: Cho tam giác ABC vuông tại A có AB = 6cm và AC = 8cm. Gọi M là trung điểm của cạnh AB, N là trung điểm của cạnh AC. Tính độ dài đoạn thẳng MN. Bài toán 3: Cho tam giác ABC vuông tại A, đường phân giác BD. Biết AD = 3 cm và DC = 5 cm. Tính độ dài AB và BC. Hy vọng rằng bài toán sẽ giúp các em rèn luyện và củng cố kiến thức môn Toán một cách hiệu quả. Chúc các em ôn tập tốt và đạt kết quả cao trong kì thi sắp tới!
Đề thi học sinh giỏi lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Gia Viễn Ninh Bình
Nội dung Đề thi học sinh giỏi lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Gia Viễn Ninh Bình Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm 2016 – 2017 phòng GD&ĐT Gia Viễn – Ninh Bình Đề thi học sinh giỏi Toán lớp 8 năm 2016 – 2017 phòng GD&ĐT Gia Viễn – Ninh Bình Chào đón quý thầy cô và các em học sinh lớp 8, đây là đề thi học sinh giỏi Toán lớp 8 năm 2016 – 2017 từ phòng GD&ĐT Gia Viễn – Ninh Bình. Đề thi gồm các câu hỏi sau: 1. Trong hình vuông ABCD, với hai đường thẳng d và d’ vuông góc nhau và cắt các cạnh BC và CD tạo ra các điểm R, S, P, Q. Chứng minh tam giác AQR và tam giác APS là tam giác cân. 2. Cạnh QR cắt cạnh PS tại H, M và N lần lượt là trung điểm của QR và PS. Chứng minh tứ giác AMHN là hình chữ nhật và MN là đường trung trực của AC. 3. Trong một hình thang cân, bình phương đường chéo bằng bình phương cạnh bên cộng với tích của hai đáy. 4. Tìm giá trị nhỏ nhất của biểu thức M. Đây là một đề thi thách thức và đòi hỏi sự logic, suy luận của các em học sinh. Chúc các em ôn tập tốt và thành công trong việc giải bài toán này!
Đề thi HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Phù Ninh Phú Thọ
Nội dung Đề thi HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Phù Ninh Phú Thọ Bản PDF - Nội dung bài viết Đề thi HSG lớp 8 môn Toán năm 2016-2017 Phòng GD&ĐT Phù Ninh Phú Thọ Đề thi HSG lớp 8 môn Toán năm 2016-2017 Phòng GD&ĐT Phù Ninh Phú Thọ Xin gửi đến quý thầy cô và các em học sinh lớp 8 đề thi HSG Toán lớp 8 năm 2016-2017 của Phòng GD&ĐT Phù Ninh - Phú Thọ. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm để giúp các em ôn tập hiệu quả. Trích dẫn một số câu hỏi từ đề thi: Trong hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD). Hãy chứng minh tam giác AMN vuông cân và AN2 = NC.NP. Tính tỉ số chu vi tam giác CMP và chu vi hình vuông ABCD. Chứng minh rằng tổng 1/AM2 + 1/AQ2 không đổi khi điểm M thay đổi trên cạnh BC. Tính chu vi P và P’ của hai tam giác đồng dạng biết tỉ số các cạnh bé nhất bằng 2/5, và P’ – P = 18 cm. Cho tam giác ABC có độ dài ba cạnh: AB = 20 cm, AC = 34 cm, BC = 42 cm. Hỏi diện tích của tam giác đó là bao nhiêu? Hy vọng đề thi sẽ giúp các em ôn tập hiệu quả và đạt kết quả tốt trong kỳ thi sắp tới. Chúc các em thành công!
Đề thi Olympic lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Thanh Oai Hà Nội
Nội dung Đề thi Olympic lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Thanh Oai Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Thanh Oai Hà Nội Đề thi Olympic lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Thanh Oai Hà Nội Chào quý thầy cô và các em học sinh lớp 8, hôm nay Sytu xin giới thiệu đến các bạn đề thi Olympic Toán lớp 8 năm 2016 – 2017 của phòng GD&ĐT Thanh Oai – Hà Nội. Đề thi này cung cấp đáp án, lời giải chi tiết và hướng dẫn chấm điểm để giúp các em ôn tập và kiểm tra kiến thức một cách hiệu quả. Đề thi gồm một số câu hỏi thú vị như: Cho tam giác ABC. Gọi P là giao điểm của ba đường phân giác trong của tam giác đó. Đường thẳng qua P và vuông góc với CP, cắt CA và CB theo thứ tự tại M và N. Yêu cầu chứng minh. Chứng minh rằng giữa ba số nguyên tố lớn hơn 3 luôn tìm được hai số có tổng hoặc hiệu chia hết cho 12. Tìm số tự nhiên n để biểu thức sau là số nguyên tố: 12n2 - 5n - 25. Mời các bạn tham gia giải đề thi và nâng cao kiến thức Toán của mình. Chúc các em thành công!