Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

101 bài toán Parabol và các vấn đề liên quan - Lương Tuấn Đức

Trong phạm vi hàm số và đồ thị, tài liệu này tác giả tập trung trình bày một lớp các bài toán khảo sát sự biến thiên, vẽ đồ thị hàm số bậc hai đơn giản (tức là dạng parabol có đỉnh là gốc tọa độ O) hay còn gọi là đồ thị hàm số y = ax^2, vấn đề vị trí tương đối giữa parabol và đường thẳng, một số bài toán gắn kết yếu tố lượng giác, hình học giải tích. Như đã nói ở trên, mục đích khoa học chính của tài liệu nhằm phục vụ cho quá trình dạy và học, kiểm tra, kỳ thi tuyển sinh lớp 10 THPT, sau nữa làm nền tảng cho tư duy hàm số, tư duy hình học giải tích ở cấp THPT mai sau, ngoài ra còn mang tính mở rộng, đào sâu, hướng đến mong muốn bạn đọc nghiên cứu đầy đủ về đường thẳng, tăng cường sự sáng tạo, đột phá, phát huy hơn nữa trong toán học và các ứng dụng trong hàng loạt các môn khoa học tự nhiên. [ads] Nội dung tài liệu : + Sự biến thiên của hàm số bậc hai + Vẽ đồ thị hàm số bậc hai đơn giản (parabola đơn giản) + Biện luận vị trí tương đối giữa đường thẳng và parabola + Một số bài toán gắn kết yếu tố hình học + Bài toán nhiều cách giải

Nguồn: toanmath.com

Đọc Sách

Phương pháp giải phương trình nghiệm nguyên
Nội dung Phương pháp giải phương trình nghiệm nguyên Bản PDF - Nội dung bài viết Phương pháp giải phương trình nghiệm nguyên Phương pháp giải phương trình nghiệm nguyên Tài liệu này bao gồm 38 trang, hướng dẫn một số phương pháp giải phương trình nghiệm nguyên. Đây là loại bài toán thường xuyên xuất hiện trong các đề thi học sinh giỏi Toán cấp THCS. A. Kiến thức cần nhớ: 1. Phương trình nghiệm nguyên là phương trình có nhiều ẩn số, với tất cả các hệ số đều là số nguyên và các nghiệm cần tìm cũng là số nguyên. 2. Phương trình nghiệm nguyên không có công thức giải tổng quát, chỉ có cách giải cụ thể cho từng dạng bài toán. Trong tài liệu này, chúng tôi giới thiệu qua một số ví dụ và bài tập cụ thể. 3. Cách giải phương trình nghiệm nguyên là rất đa dạng, đòi hỏi học sinh phải phân tích, dự đoán, đối chiếu và tư duy sáng tạo, logic để tìm ra nghiệm. B. Các dạng bài tập: - Dạng 1: Phương pháp đưa về phương trình ước số. - Dạng 2: Phương pháp sử dụng tính chất chia hết. - Dạng 3: Phương pháp xét số dư từng vế. - Dạng 4: Phương pháp đưa về dạng tổng. - Dạng 5: Phương pháp sử dụng bất đẳng thức. - Dạng 6: Phương pháp đánh giá. - Dạng 7: Phương pháp giải lùi vô hạn, nguyên tắc cực hạn. C. Bài tập tự luyện: Để nắm vững phương pháp giải phương trình nghiệm nguyên, học sinh nên thực hành nhiều bài tập tự luyện để rèn luyện kỹ năng và cải thiện hiệu suất giải toán.
Bài toán chứng minh đẳng thức, bất đẳng thức hình học phẳng
Nội dung Bài toán chứng minh đẳng thức, bất đẳng thức hình học phẳng Bản PDF - Nội dung bài viết Bài toán chứng minh đẳng thức, bất đẳng thức hình học phẳng Bài toán chứng minh đẳng thức, bất đẳng thức hình học phẳng Tài liệu này bao gồm 139 trang, được lựa chọn và hướng dẫn cách giải các bài toán liên quan đến việc chứng minh đẳng thức, bất đẳng thức trong hình học phẳng. Đây là công cụ hữu ích giúp học sinh hiểu rõ chương trình Toán lớp 9 và ôn tập cho kỳ thi vào lớp 10 môn Toán. Cụ thể, tài liệu này bao gồm các bài toán khác nhau từ lớp 1 đến lớp 9. Các bài toán được chia thành từng cấp độ, từ những vấn đề đơn giản như sử dụng định lí Pythagore, tam giác bằng nhau, đến những bài toán phức tạp hơn như sử dụng quan hệ góc, cạnh đối diện, và bất đẳng thức tam giác. Bên cạnh đó, tài liệu cũng giới thiệu các phương pháp giải bài toán hình học bằng cách sử dụng diện tích, hình bình hành, tam giác đồng dạng và các hệ thức quen thuộc như định lí Thales, đường phân giác trong tam giác. Với những bài toán và cách giải đa dạng như vậy, tài liệu này sẽ giúp học sinh nắm vững kiến thức và kỹ năng cần thiết để giải quyết các vấn đề liên quan đến đẳng thức, bất đẳng thức hình học phẳng.
Bí quyết giải toán số học THCS theo chủ đề
Nội dung Bí quyết giải toán số học THCS theo chủ đề Bản PDF - Nội dung bài viết Bí quyết giải toán số học THCS Bí quyết giải toán số học THCS Tài liệu Bí quyết giải toán số học THCS được biên soạn bởi tác giả: Huỳnh Kim Linh và Nguyễn Quốc Bảo, gồm 525 trang. Tài liệu này trình bày những bí quyết giải toán số học THCS theo chủ đề, chú trọng vào một dạng toán thường gặp trong các đề thi chọn học sinh giỏi Toán từ lớp 6 đến lớp 9. Tài liệu này sẽ giúp bạn hiểu rõ hơn về cách giải các dạng toán số học THCS, từ đơn giản đến phức tạp, giúp bạn tự tin hơn khi tham gia các kỳ thi Toán. Bên cạnh đó, việc biên soạn bởi các tác giả có kinh nghiệm trong giảng dạy môn Toán sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để thành công trong việc giải các bài toán số học THCS.
Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo
Nội dung Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo Bản PDF - Nội dung bài viết Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo Được biên soạn bởi tác giả Nguyễn Quốc Bảo, tài liệu này gồm 327 trang, giúp hướng dẫn các phương pháp chứng minh bất đẳng thức. Bất đẳng thức là dạng toán khó thường xuất hiện trong các đề thi chọn học sinh giỏi Toán lớp 8/ Toán lớp 9, đề tuyển sinh lớp 10 môn Toán. Phần I của tài liệu bao gồm các phương pháp chứng minh bất đẳng thức như sau: Chủ đề 1: Phương pháp dùng định nghĩa trong chứng minh bất đẳng thức. Chủ đề 2: Phương pháp biến đổi tương đương trong chứng minh bất đẳng thức. Chủ đề 3: Phương pháp phản chứng trong chứng minh bất đẳng thức. Chủ đề 4: Phương pháp tam thức bậc hai trong chứng minh bất đẳng thức. Và các chủ đề khác như sử dụng tính chất tỷ số, làm trội, làm giảm, quy nạp toán học, dãy số, AM-GM (Cauchy), Bunyakovsky, có biến trên một đoạn, kĩ thuật đồng bậc hóa, chuẩn hóa, sử dụng đẳng thức, nguyên lý Dirichlet, sắp xếp biến, hàm số bậc nhất, dồn biến, hình học, đổi biến, cực trị, hệ số bất định. Phần II của tài liệu tập trung vào tuyển chọn các bài toán bất đẳng thức hay thường xuất hiện trong các kì thi chọn học sinh giỏi Toán. Bí quyết chứng minh bất đẳng thức của Nguyễn Quốc Bảo là nguồn tư liệu hữu ích giúp học sinh nắm vững và áp dụng thành thục các phương pháp chứng minh bất đẳng thức trong quá trình học tập của mình.