Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 năm 2023 2024 trường THCS Lê Thị Hồng Gấm Đà Nẵng

Nội dung Đề thi thử Toán vào 10 năm 2023 2024 trường THCS Lê Thị Hồng Gấm Đà Nẵng Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 năm 2023-2024 Trường THCS Lê Thị Hồng Gấm Đà Nẵng Đề thi thử Toán vào 10 năm 2023-2024 Trường THCS Lê Thị Hồng Gấm Đà Nẵng Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh lớp 9 bộ đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023-2024 của trường THCS Lê Thị Hồng Gấm, Đà Nẵng. Đề thi diễn ra vào ngày 13 tháng 05 năm 2023, với những câu hỏi chất lượng, phù hợp với chương trình học của lớp 9. Một số câu hỏi trong đề thi bao gồm: 1. Cho hai hàm số y=x và y=x^2+3. Hãy vẽ đồ thị của hai hàm số này trên cùng một hệ trục tọa độ Oxy. Tìm điểm C thuộc trục Oy sao cho diện tích tam giác ABC bằng 8 cm². 2. Hai đội thủy lợi A và B đào mương. Nếu mỗi đội làm một mình, tổng thời gian hai đội phải làm là 25 ngày, trong đó đội A nhanh hơn đội B. Nếu hai đội cùng làm, công việc hoàn thành trong 6 ngày. Tính thời gian để mỗi đội làm một mình xong công việc. 3. Cho đường tròn (O; R) và dây cung BC không qua O. Chứng minh tứ giác BCEF là tứ giác nội tiếp. Tính BK, AG, BG theo bán kính R của đường tròn. Chứng minh đường tròn ngoại tiếp tam giác HMI đi qua một điểm cố định khi A thay đổi trên cung BC. Đề thi thử Toán vào 10 năm 2023-2024 của trường THCS Lê Thị Hồng Gấm Đà Nẵng không chỉ giúp học sinh ôn tập kiến thức mà còn giúp họ thử sức và chuẩn bị tốt nhất cho kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 môn Toán sở GDĐT Khánh Hòa
Tài liệu gồm 32 trang, được tổng hợp bởi các tác giả: Huỳnh Kim Linh, Nguyễn Thu Trang, Phạm Hoài, Lê Hoàng Ngọc Đức, Trần Đức An, tuyển tập đề thi tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo tỉnh Khánh Hòa trong vòng 20 năm gần đây, từ năm học 2000 – 2001 đến năm học 2019 – 2020. 1. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2000 – 2001 sở GD&ĐT Khánh Hòa. 2. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2001 – 2002 sở GD&ĐT Khánh Hòa. 3. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2002 – 2003 sở GD&ĐT Khánh Hòa. 4. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2003 – 2004 sở GD&ĐT Khánh Hòa. 5. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2004 – 2005 sở GD&ĐT Khánh Hòa. 6. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2005 – 2006 sở GD&ĐT Khánh Hòa. 7. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2006 – 2007 sở GD&ĐT Khánh Hòa. 8. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2007 – 2008 sở GD&ĐT Khánh Hòa. 9. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2008 – 2009 sở GD&ĐT Khánh Hòa. [ads] 10. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2009 – 2010 sở GD&ĐT Khánh Hòa. 11. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2010 – 2011 sở GD&ĐT Khánh Hòa. 12. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2011 – 2012 sở GD&ĐT Khánh Hòa. 13. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2012 – 2013 sở GD&ĐT Khánh Hòa. 14. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2013 – 2014 sở GD&ĐT Khánh Hòa. 15. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2014 – 2015 sở GD&ĐT Khánh Hòa. 16. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2015 – 2016 sở GD&ĐT Khánh Hòa. 17. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2016 – 2017 sở GD&ĐT Khánh Hòa. 18. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2017 – 2018 sở GD&ĐT Khánh Hòa. 19. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2018 – 2019 sở GD&ĐT Khánh Hòa. 20. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2019 – 2020 sở GD&ĐT Khánh Hòa.
Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 môn Toán sở GDĐT Hòa Bình
Tài liệu gồm 39 trang, được tổng hợp bởi các tác giả: Lưu Công Hoàn, Trần Thu Hà, Lê Đức Thọ, Trương Hữu Thanh, Bùi Văn Vịnh, Đào Tuấn Anh, tuyển tập đề thi tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo tỉnh Hòa Bình trong vòng 20 năm gần đây, từ năm học 2000 – 2001 đến năm học 2019 – 2020. 1. Đề tuyển sinh vào lớp 10 môn Toán năm học 2000 – 2001 sở GD&ĐT Hòa Bình. 2. Đề tuyển sinh vào lớp 10 môn Toán năm học 2001 – 2002 sở GD&ĐT Hòa Bình. 3. Đề tuyển sinh vào lớp 10 môn Toán năm học 2002 – 2003 sở GD&ĐT Hòa Bình. 4. Đề tuyển sinh vào lớp 10 môn Toán năm học 2003 – 2004 sở GD&ĐT Hòa Bình. 5. Đề tuyển sinh vào lớp 10 môn Toán năm học 2004 – 2005 sở GD&ĐT Hòa Bình. 6. Đề tuyển sinh vào lớp 10 môn Toán năm học 2005 – 2006 sở GD&ĐT Hòa Bình. 7. Đề tuyển sinh vào lớp 10 môn Toán năm học 2006 – 2007 sở GD&ĐT Hòa Bình. 8. Đề tuyển sinh vào lớp 10 môn Toán năm học 2007 – 2008 sở GD&ĐT Hòa Bình. 9. Đề tuyển sinh vào lớp 10 môn Toán năm học 2008 – 2009 sở GD&ĐT Hòa Bình. 10. Đề tuyển sinh vào lớp 10 môn Toán năm học 2009 – 2010 sở GD&ĐT Hòa Bình. [ads] 11. Đề tuyển sinh vào lớp 10 môn Toán năm học 2010 – 2011 sở GD&ĐT Hòa Bình. 12. Đề tuyển sinh vào lớp 10 môn Toán năm học 2011 – 2012 sở GD&ĐT Hòa Bình. 13. Đề tuyển sinh vào lớp 10 môn Toán năm học 2012 – 2013 sở GD&ĐT Hòa Bình. 14. Đề tuyển sinh vào lớp 10 môn Toán năm học 2013 – 2014 sở GD&ĐT Hòa Bình. 15. Đề tuyển sinh vào lớp 10 môn Toán năm học 2014 – 2015 sở GD&ĐT Hòa Bình. 16. Đề tuyển sinh vào lớp 10 môn Toán năm học 2015 – 2016 sở GD&ĐT Hòa Bình. 17. Đề tuyển sinh vào lớp 10 môn Toán năm học 2016 – 2017 sở GD&ĐT Hòa Bình. 18. Đề tuyển sinh vào lớp 10 môn Toán năm học 2017 – 2018 sở GD&ĐT Hòa Bình. 19. Đề tuyển sinh vào lớp 10 môn Toán năm học 2018 – 2019 sở GD&ĐT Hòa Bình. 20. Đề tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020 sở GD&ĐT Hòa Bình.
Đề thi thử Toán tuyển sinh lớp 10 năm 2020 - 2021 trường Phan Huy Chú - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử Toán tuyển sinh lớp 10 THPT năm học 2020 – 2021 trường THPT Phan Huy Chú, quận Đống Đa, thành phố Hà Nội; đề thi được biên soạn theo dạng tự luận với 01 trang và 05 bài toán, thời gian làm bài thi là 90 phút. Trích dẫn đề thi thử Toán tuyển sinh lớp 10 năm 2020 – 2021 trường Phan Huy Chú – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Khoảng cách giữa hai tỉnh A và B là 120 km. Hai người đi xe máy cùng khởi hành một lúc đi từ A đến B với vận tốc bằng nhau. Sau khi đi được 1 giờ thì xe của người thứ nhất bị hỏng nên phải dừng lại sửa xe 14 phút, còn người thứ hai tiếp tục đi với vận tốc ban đầu. Sau khi sửa xe xong, người thứ nhất đi với vận tốc nhanh hơn trước 10 km/h nên đã đến B cùng lúc với người thứ hai. Tính vận tốc hai người đi lúc đầu. [ads] + Cho tam giác ABC có ba góc nhọn. Gọi D, E, F lần lượt là chân đường cao hạ từ A, B, C của tam giác. Gọi P là giao điểm của EF và AD. 1) Chứng minh bốn điểm A, F, D, C cùng thuộc một đường tròn. 2) Chứng minh rằng PF.DE = PE.DF. 3) Gọi I là trung điểm của đoạn thẳng BC. Hình chiếu của I lên các đường FD, FE lần lượt là K, H. Chứng minh rằng FDE = FIE và đường thẳng KH song song với đường thẳng AD. + Cho biểu thức P = a^2.b + b^2.c + c^2.a với a, b, c là các số thực không âm thỏa mãn a + b + c = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P.
Đề thi thử vào lớp 10 môn Toán năm 2020 - 2021 trường THCS Tam Khương - Hà Nội
Nhằm chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán, ngày … tháng 05 năm 2020, trường THCS Tam Khương, quận Đống Đa, thành phố Hà Nội tổ chức kỳ thi thử môn Toán thi vào lớp 10 PTTH năm học 2020 – 2021. Đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 trường THCS Tam Khương – Hà Nội được biên soạn bám sát cấu trúc đề tuyển sinh lớp 10 môn Toán của sở Giáo dục và Đào tạo thành phố Hà Nội những năm gần đây. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 trường THCS Tam Khương – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ca nô xuôi dòng trên một khúc sông dài 132km, sau đó chạy ngược dòng 104 km trên khúc sông đó. Tính vận tốc của ca nô khi nước yên lặng, biết rằng vận tốc của dòng nước là 4km/h và thời gian ca nô chạy xuôi dòng ít hơn thời gian ca nô chạy ngược dòng là 1 giờ. [ads] + Một bồn chứa xăng đặt trên xe gồm hai nửa hình cầu có đường kính 2,2m và một hình trụ có chiều dài 3,5m (hình dưới). Tính thể tích của bồn chứa xăng (kết quả làm tròn đến chữ số thập phân thứ hai sau dấu phẩy). + Cho đường tròn (O;R) đường kính AB, dây cung MN khác đường kính của (O) vuông góc với AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E khác M, E khác I). Tia AE cắt đường tròn tại điểm thứ hai là K. Chứng minh: 1) Tứ giác IEKB nội tiếp đường tròn. 2) AE.AK + BI.BA = 4R^2. 3) Giả sử I là trung điểm của OA. Xác định vị trí của K để (KM + KN + KB) đạt giá trị lớn nhất.