Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 1)

Nội dung Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 1) Bản PDF - Nội dung bài viết Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 1) Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 1) Đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 1) bao gồm 2 trang với 6 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút. Trích dẫn đề thi vào 10 chuyên môn Toán năm 2020 – 2021 trường ĐHKH Huế (vòng 1): + Đầu tháng 2 năm 2020, giá tôm hùm giảm do dịch bệnh COVID-19. Ông A bán 40% số tôm với giá 400 nghìn đồng mỗi kilôgam và số còn lại với giá 700 nghìn đồng mỗi kilôgam. Ông A đầu tư vào hồ tôm 250 triệu đồng và sau khi trừ đi số tiền này, lãi 40 triệu đồng. Nếu không có dịch COVID-19, thương lái sẽ mua hết số tôm với giá 1,2 triệu đồng mỗi kilôgam. Hỏi nếu không có dịch COVID-19, gia đình ông A thu được lợi nhuận bao nhiêu? + Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Qua A kẻ các tiếp tuyến AM và AN với đường tròn (O), với M và N là các tiếp điểm. Dựng cát tuyến ABC với đường tròn (O) sao cho B nằm giữa A, C đồng thời B và M nằm cùng phía so với đường thẳng AO. Chứng minh những điều sau: 1. Tứ giác ANOM nội tiếp vào đường tròn và AB.AC = AM2. 2. Gọi H là giao điểm của AO và MN. Chứng minh tứ giác OHBC nội tiếp vào đường tròn. 3. Qua B kẻ đường thẳng song song với đường thẳng MC lần lượt cắt AM và MN tại E và F. Chứng minh HM là phân giác trong của góc BHC và B là trung điểm của đoạn thẳng EF. + Phương trình x2 + (2m − 1)x − 3 = 0. Chứng minh phương trình luôn có hai nghiệm phân biệt, trái dấu với mọi giá trị của m. Tìm tất cả các giá trị m để tổng hai nghiệm là một số dương. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn x21 + x22 = 7.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh chuyên năm 2019 2020 môn Toán sở GD ĐT Gia Lai
Nội dung Đề tuyển sinh chuyên năm 2019 2020 môn Toán sở GD ĐT Gia Lai Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 chuyên môn Toán sở GD&ĐT Gia Lai Đề thi tuyển sinh vào lớp 10 chuyên môn Toán sở GD&ĐT Gia Lai Xin chào các thầy cô và các bạn học sinh! Sytu xin giới thiệu đến quý vị đề thi chính thức tuyển sinh vào lớp 10 chuyên năm học 2019 – 2020 môn Toán sở GD&ĐT Gia Lai. Đề thi này dành cho các bạn học sinh đăng ký học các lớp không chuyên tại các trường THPT chuyên trực thuộc sở GD&ĐT Gia Lai. Đề tuyển sinh lớp 10 chuyên năm 2019 – 2020 môn Toán sở GD&ĐT Gia Lai bao gồm 1 trang với 5 bài toán dạng tự luận, thời gian làm bài là 120 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên năm 2019 – 2020 môn Toán sở GD&ĐT Gia Lai: Cho phương trình \(x^2 + 2(m - 2)x + m^2 - 3m - 1 = 0\), với m là tham số. a) Giải phương trình đã cho khi m = 1. b) Xác định giá trị của m để phương trình đã cho có hai nghiệm phân biệt \(x_1, x_2\) sao cho \(x_1^2 – x_1x_2 + x_2^2 = 9\). Quãng đường AB dài 180 km. Hai ô tô cùng khởi hành từ A đến B. Mỗi giờ ô tô thứ nhất chạy nhanh hơn 10 km so với ô tô thứ hai, nên ô tô thứ nhất đến B trước ô tô thứ hai 36 phút. Hãy tính vận tốc trung bình của mỗi ô tô. Cho đường tròn (O) và điểm A nằm ngoài (O). Đường thẳng AC cắt đường tròn (O) tại hai điểm B và C (AB < AC). Qua A vẽ một đường thẳng không đi qua điểm O, cắt đường tròn (O) tại hai điểm D và E (AD < AE). Đường thẳng vuông góc với AC tại A cắt đường thẳng CE tại F. a) Chứng minh tứ giác ABEF nội tiếp đường tròn. b) Gọi M là giao điểm của đường thẳng FB và đường tròn (O) (M khác B). Chứng minh AC là đường trung trực của đoạn thẳng DM. c) Chứng minh \(CE \cdot CF + AD \cdot AE = AC^2\).
Đề tuyển sinh năm 2019 2020 môn Toán sở GD ĐT Quảng Ngãi
Nội dung Đề tuyển sinh năm 2019 2020 môn Toán sở GD ĐT Quảng Ngãi Bản PDF - Nội dung bài viết Đề tuyển sinh năm 2019-2020 môn Toán sở GD&ĐT Quảng Ngãi Đề tuyển sinh năm 2019-2020 môn Toán sở GD&ĐT Quảng Ngãi Chào các thầy cô giáo và các em học sinh! Sytu xin giới thiệu đến bạn đề tuyển sinh lớp 10 năm học 2019-2020 môn Toán do Sở Giáo dục và Đào tạo Quảng Ngãi tổ chức. Đề thi bao gồm 1 trang với 5 bài toán dạng tự luận. Thời gian làm bài là 90 phút và kỳ thi sẽ diễn ra vào ngày 05 tháng 06 năm 2019. Một trong các bài toán trong đề tuyển sinh là: "Một đội công nhân đặt kế hoạch sản xuất 250 sản phẩm. Trong 4 ngày đầu, họ hoàn thành đúng kế hoạch. Mỗi ngày sau đó, họ vượt mức 5 sản phẩm nên đã hoàn thành công việc sớm hơn 1 ngày so với dự định. Hỏi theo kế hoạch, mỗi ngày đội công nhân làm được bao nhiêu sản phẩm? Biết rằng năng suất làm việc của mỗi công nhân là như nhau." Bên cạnh đó, đề cũng cung cấp các bài toán khác như về tam giác vuông và hình vuông để kiểm tra kiến thức và kỹ năng của thí sinh. Hãy tham gia và thể hiện khả năng của mình trong kỳ thi tuyển sinh này!
Đề tuyển sinh vào 10 môn Toán chuyên năm 2019 2020 sở GD ĐT Đồng Tháp
Nội dung Đề tuyển sinh vào 10 môn Toán chuyên năm 2019 2020 sở GD ĐT Đồng Tháp Bản PDF - Nội dung bài viết Đề tuyển sinh vào lớp 10 môn Toán chuyên năm 2019 2020 sở GD ĐT Đồng Tháp Đề tuyển sinh vào lớp 10 môn Toán chuyên năm 2019 2020 sở GD ĐT Đồng Tháp Sytu xin gửi đến các thầy cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán chuyên năm học 2019 – 2020 sở GD&ĐT tỉnh Đồng Tháp. Kỳ thi sẽ diễn ra vào ngày 08 tháng 06 năm 2019, với đề thi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm để giúp các em học sinh tự tin và chuẩn bị tốt nhất cho kỳ thi sắp tới.
Đề Toán tuyển sinh năm 2019 2020 sở GD ĐT Bắc Ninh
Nội dung Đề Toán tuyển sinh năm 2019 2020 sở GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm 2019-2020 sở GD ĐT Bắc Ninh Đề Toán tuyển sinh năm 2019-2020 sở GD ĐT Bắc Ninh Sytu xin gửi đến quý thầy cô giáo cùng các em học sinh đề Toán tuyển sinh lớp 10 năm 2019-2020 sở GD&ĐT Bắc Ninh. Đây là kỳ thi nhằm tuyển chọn các em học sinh có học lực tốt để vào học tại các trường THPT trên địa bàn tỉnh Bắc Ninh. Đề thi được biên soạn theo dạng kết hợp trắc nghiệm và tự luận, với 6 câu trắc nghiệm và 4 câu tự luận. Thời gian làm bài là 120 phút. Trích đề Toán tuyển sinh lớp 10 năm 2019-2020 sở GD&ĐT Bắc Ninh: Cho đường tròn (O) và hai điểm A, B nằm trên (O) sao cho góc AOB = 90°. Điểm C nằm trên cung lớn AB sao cho AC > BC và tam giác ABC có ba góc đều nhọn. Hãy chứng minh rằng: a) Tứ giác CIHK nội tiếp một đường tròn. b) MN là đường kính của đường tròn (O). c) OC song song với DH. Cho phương trình \(x^2 - 2mx - 2m - 1 = 0\) với m là tham số. Tìm m sao cho phương trình có hai nghiệm phân biệt x1 và x2 thỏa mãn √(x1 + x2) + √(3 + x1x2) = 2m + 1. Cho hai số thực không âm a, b thỏa mãn a^2 + b^2 = 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(M = \frac{a^3 + b^3 + 4}{ab + 1}\). Cảm ơn quý thầy cô đã quan tâm và hy vọng các em học sinh sẽ làm bài thật tốt trong kỳ thi tuyển sinh sắp tới.