Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Yên Lạc Vĩnh Phúc

Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Yên Lạc Vĩnh Phúc Bản PDF - Nội dung bài viết Đề giao lưu HSG Toán lớp 8 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc Đề giao lưu HSG Toán lớp 8 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 8 đề giao lưu HSG Toán lớp 8 năm học 2016 – 2017 của phòng GD&ĐT Yên Lạc – Vĩnh Phúc. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi trong đề giao lưu HSG Toán lớp 8 năm 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc: Các số nguyên từ 1 đến 10 được xếp xung quanh một đường tròn theo một thứ tự tùy ý. Chứng minh rằng với cách xếp đó luôn tồn tại ba số theo thứ tự liên tiếp có tổng lớn hơn hoặc bằng 17. Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: BH.BE + CH.CF = BC2. b) Chứng minh: H cách đều ba cạnh tam giác DEF. c) Trên đoạn HB, HC tương ứng lấy điểm M, N tùy ý sao cho HM = CN. Chứng minh đường trung trực của đoạn thẳng MN luôn đi qua một điểm cố định. Tìm các giá trị của x để M có giá trị là số nguyên. Đề giao lưu HSG Toán lớp 8 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc là một công cụ hữu ích giúp các em học sinh rèn luyện, nâng cao kiến thức và kỹ năng giải bài toán. Hy vọng rằng đề thi sẽ giúp các em chuẩn bị tốt cho các kì thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Việt Trì - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 cấp thành phố năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Việt Trì, tỉnh Phú Thọ; đề thi gồm hai phần: phần trắc nghiệm khách quan: 16 câu – 08 điểm và phần tự luận: 04 câu – 12 điểm, thời gian làm bài: 150 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Việt Trì – Phú Thọ : + Lớp 8D có 34 em đi học phụ đạo ba môn: Toán, Ngữ văn, tiếng Anh. Có 12 em đi học Toán, số em đi học tiếng Anh nhiều gấp 3 lần số em đi học Ngữ văn. Trong đó có 5 em vừa đi học tiếng Anh vừa đi học Toán, 4 em vừa đi học tiếng Anh vừa đi học Ngữ văn, 3 em vừa đi học Toán vừa đi học Ngữ văn, 2 em đi học cả ba môn nói trên. Số em đi học tiếng Anh bằng? + Một ca nô xuôi từ bến A đến bến B, hai bến cách nhau 18km hết 1 giờ 30 phút. Biết vận tốc dòng nước chảy là 2km h thì vận tốc thực của ca nô (vận tốc khi dòng nước yên lặng) là? + Cho tam giác ABC nhọn, các đường cao AA BB CC H là trực tâm. a) Tính tổng HA HB HC AA BB CC b) Gọi AI là phân giác của ∆ABC IM IN thứ tự là phân giác của AIC và AIB. Chứng minh rằng: AN BI CM BN IC AM c) Tìm điều kiện của ∆ABC để biểu thức 2 22 2 AB BC CA AA BB CC đạt giá trị nhỏ nhất.
Đề HSG cấp huyện Toán 8 năm 2022 - 2023 phòng GDĐT Lương Tài - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Ba ngày 08 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề HSG cấp huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Lương Tài – Bắc Ninh : + Cho đa thức 2 f x ax bx c với abc là các số hữu tỉ. Biết rằng f f f (0) (1) (2) có giá trị nguyên. Chứng minh rằng 2 2 a b có giá trị nguyên. + Cho a, b là hai số nguyên phân biệt lớn hơn 1 thỏa mãn 2 a b 2 2 là lũy thừa của một số nguyên tố khác 13 và 2 b a 2 2 chia hết cho 2 a b 2 2. Chứng minh 2 3 a là số chính phương. + Cho tam giác ABC có B 2C; trên tia đối của tia BA lấy điểm D sao cho BD = BC. Qua A kẻ đường thẳng vuông góc với CD cắt BC và CD lần lượt tại M và N. Đường vuông góc với BC tại C cắt AM tại K. Chứng minh rằng: a) ∆ABM là tam giác cân và ABC 2AKC b) MA.KN = MN.KA; c) Tính độ dài ba cạnh của tam giác ABC biết độ dài ba cạnh là ba số tự nhiên liên tiếp.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 trường THCS Lê Quý Đôn - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát đội tuyển học sinh giỏi môn Toán 8 năm học 2022 – 2023 trường THCS Lê Quý Đôn, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 11 tháng 02 năm 2023; đề thi có đáp án và hướng dẫn giải. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 trường THCS Lê Quý Đôn – Bắc Giang : + Cho các số thực a b thỏa mãn: 2 2 a b ab a b 1 0. Tính giá trị của biểu thức 3 4 Ma b 3 2 2022. + Cho a và b là các số tự nhiên thoả mãn 2 2 2 3 aa bb. Chứng minh rằng: a b và 221 a b là các số chính phương. + Cho xyz là các số thực thỏa mãn điều kiện 2 2 2 3 1011 2 x y yz z. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức Qxyz.
Đề học sinh giỏi huyện Toán 8 năm 2022 - 2023 phòng GDĐT Lục Nam - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lục Nam, tỉnh Bắc Giang; đề thi hình thức 30% trắc nghiệm (20 câu – 06 điểm) kết hợp 70% tự luận (04 câu – 14 điểm), thời gian làm bài 120 phút; kỳ thi được diễn ra vào ngày 09 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Lục Nam – Bắc Giang : + Chọn đáp án đúng nhất: Cho hai số thực x y thỏa mãn 2 2 2 x y x y xy 2 4 6 1. Giá trị của biểu thức Axy 2022 2023 bằng? + Tam giác ABC vuông tại A có AC = 8 cm, BC = 10 cm. Tia phân giác của góc BAC cắt cạnh BC tại D. Tỉ số diện tích của tam giác ABD và tam giác ACD là? + Cho hình vuông ABCD có 2 đường chéo AC và BD cắt nhau tại O. Trên cạnh BC lấy N (0 < NC < NB), đường thẳng vuông góc với ON tại O cắt AB tại M. Gọi E là giao điểm của AN với DC, gọi K là giao điểm của ON với BE. 1. Chứng minh ∆MON vuông cân. 2. Chứng minh MN // BE. 3. Gọi H là giao điểm của KC và BD. Chứng minh: OB NC CH OH NB KH.