Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Hậu Giang

Nội dung Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Hậu Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Hậu Giang Đề thi tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Hậu Giang Chào đón quý thầy cô và các em học sinh lớp 9! Đây là đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT & THPT chuyên môn Toán năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Hậu Giang. Đề thi bao gồm 02 trang với tổng cộng 13 câu hỏi: 08 câu trắc nghiệm (chiếm 20% tổng số điểm) và 05 câu tự luận (chiếm 80% tổng số điểm). Thời gian làm bài là 90 phút (không tính thời gian phát đề). Đề thi đi kèm đáp án và lời giải chi tiết để học sinh tham khảo. Dưới đây là một số câu hỏi mẫu trong đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Hậu Giang: 1. Cho đường tròn O có bán kính R = 3 và điểm M sao cho OM = R/2. Từ M kẻ hai tiếp tuyến MA, MB tới O với A và B là hai tiếp điểm. a) Chứng minh tứ giác MAOB nội tiếp. Tính diện tích S của tứ giác MAOB. b) Lấy điểm C trên đường tròn O sao cho tam giác ABC nhọn, AB = AC và có các đường cao BE, CF. Gọi H là trực tâm tam giác ABC và N, J lần lượt là trung điểm của BC, AH. Chứng minh tứ giác AJNO là hình bình hành và JEN = 90 độ. 2. Tính chu vi của đường tròn ngoại tiếp tam giác, biết tam giác ABC vuông tại A và BC = 6. 3. Cho hình thang có đáy lớn BC, đáy nhỏ AD, AD = BC cm, AC = 10 cm, AB = 5 cm và ACB = 45 độ. Tính diện tích S của hình thang đã cho. Đề thi hoàn toàn không xuất hiện tại đây, để tải file WORD chính thức về và tham gia thi tuyển, vui lòng liên hệ với sở GD&ĐT Hậu Giang. Chúc các em học sinh thực hiện bài thi tốt và đạt kết quả cao trong kỳ thi tuyển sinh sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường THPT chuyên Thái Bình (đề chung)
Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên Thái Bình (đề chung) là đề thi vòng 1, được dành cho tất cả các thí sinh tham dự kỳ thi, kỳ thi được diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên Thái Bình (đề chung) : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x^2/2 và hai đường thẳng (d1): y = 5x + 2, (d2): y = (m^2 + 1)x + m (với m là tham số). 1. Tìm m để (d1) song song với (d2). 2. Tìm m để (d2) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho Q = x1 + x2 – 4x1x2 đạt giá trị nhỏ nhất. + Cho phương trình x^2 – 2(m + 1)x + m^2 – 3m = 0 (với m là tham số). 1. Giải phương trình với m = 0. 2. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn: (x1 + 2)(x2 + 2) = 10. [ads] + Cho đường tròn (O;R) đường kính AB. Trên tia AB lấy điểm C nằm ngoài đường tròn, kẻ đường thẳng d vuông góc với AB tại C. Gọi E là trung điểm của đoạn thẳng OB, đường thẳng đi qua E cắt đưòng tròn (O) ở M và N (M khác A và B). Tia AM, AN thứ tự cắt d ở P và Q. 1. Chứng minh tứ giác BCPM nội tiếp. 2. Chứng minh AM.AP = AN.AQ. 3. Giả sử MN = 7R/4. Tính độ dài đoạn ME, NE theo R. 4. Cho A, B, C cố định. Chứng minh rằng khi MN quay quanh điểm E (M khác A và B) thì tâm của đường tròn ngoại tiếp tam giác APQ luôn nằm trên một đường thẳng cố định.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT TP HCM
Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán chuyên năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT TP HCM gồm 01 trang với 06 bài toán, thời gian làm bài 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT TP HCM : + Tìm tất cả các số nguyên dương x, y thỏa mãn phương trình 3^x – y^3 = 1. + Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh AB, BC, CA lần lượt tại D, E, F. Kẻ đường kính EJ của đường tròn (I). Gọi d là đường thẳng qua A song song với BC. Đường thẳng JD cắt d, BC lần lượt tại L, H. a) Chứng minh: E, F, L thẳng hàng. b) JA, JF cắt BC lần lượt tại M, K. Chứng minh: MH vuông góc MK. [ads] + Cho tam giác nhọn ABC (AB < BC < CA) nội tiếp đường tròn (O). Từ A kẻ đường thẳng song song với BC cắt (O) tại A1. Từ B kẻ đường thẳng song song với AC cắt (O) tại B1. Từ C kẻ đường thẳng song song với AB cắt (O) tại C1. Chứng minh rằng các đường thẳng qua A1, B1, C1 lần lượt vuông góc với BC, CA, AB đồng quy.
Đề tuyển sinh vào 10 môn Toán chuyên năm 2020 - 2021 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán chuyên năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 24 tháng 07 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề tuyển sinh vào 10 môn Toán cơ sở năm 2020 - 2021 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán cơ sở năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 23 tháng 07 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.