Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hướng dẫn giải bài toán tích phân hàm ẩn - Nguyễn Hoàng Việt

Tích phân hàm ẩn là một dạng toán thuộc mức độ vận dụng – vận dụng cao, được xuất hiện khá nhiều sau khi Bộ Giáo dục và Đào tạo quyết định thay đổi hình thức thi THPT Quốc gia môn Toán từ dạng tự luận sang dạng trắc nghiệm, trong đó hàm số cần tính nguyên hàm – tích phân không được cho ở dạng tường minh mà được “ẩn” kèm theo một số điều kiện có sẵn, điều này giúp làm hạn chế khả năng can thiệp của máy tính cầm tay trong quá trình giải toán, đòi hỏi học sinh cần phải tư duy nhiều hơn. Dạng toán tích phân hàm ẩn cũng ít xuất hiện trong sách giáo khoa Giải tích 12 cơ bản và nâng cao, do đó nhiều học sinh sẽ cảm thấy bỡ ngỡ khi bắt gặp dạng toán này. Để giúp các em có thể nắm được một số phương pháp giải quyết bài toán tích phân hàm ẩn, giới thiệu đến các em tài liệu hướng dẫn giải bài toán tích phân hàm ẩn, tài liệu gồm 89 trang được biên soạn bởi thầy Nguyễn Hoàng Việt bao gồm 84 ví dụ minh họa và 75 bài tập tích phân hàm ẩn có lời giải chi tiết, các bài tập được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán. [ads] Mục lục tài liệu hướng dẫn giải bài toán tích phân hàm ẩn – Nguyễn Hoàng Việt: Dạng 1 . Áp dụng định nghĩa, tính chất nguyên hàm. Dạng 2 . Áp dụng định nghĩa, tính chất, giải hệ tích phân. Dạng 3 . Tích phân hàm ẩn – phương pháp đổi biến. Tích phân hàm ẩn đổi biến dạng 1: Ta gặp ở bài toán đơn giản loại 1. Tích phân hàm ẩn đổi biến dạng 2: Bài tập thường cho ở dạng 2. Một số chú ý đặc sắc với tích phân hàm ẩn đổi biến: + Chú ý 1. Với những hàm số có tính chẵn lẻ ta cần nhớ. + Chú ý 2. Cách đổi biến ngược đối với hàm số luôn đồng biến hoặc luôn nghịch biến. + Chú ý 3. Bài toán tích phân có dạng sau. + Chú ý 4. Một số bài toán không theo khuôn mẫu sẵn thì yêu cầu học sinh phải có tư duy, có kĩ năng biến đổi để đưa về dạng quen thuộc. Dạng 4 . Phương pháp từng phần.

Nguồn: toanmath.com

Đọc Sách

Phương pháp giải các bài toán Tích phân - Trung tâm LTĐH Vĩnh Viễn
Tài liệu gồm 33 trang hướng dẫn phương pháp giải các dạng toán tích phân, các bài toán được chọn lọc từ các đề thi tuyển sinh Cao Đẳng – Đại học. Nội dung tài liệu: Vấn đề 1: BIẾN ĐỔI VỀ TỔNG – HIỆU CÁC TÍCH PHÂN CƠ BẢN Vấn đề 2: TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ Vấn đề 3: TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN Vấn đề 4: TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP PHỐI HỢP Vấn đề 5: ỨNG DỤNG CỦA TÍCH PHÂN [ads]
Chuyên đề trắc nghiệm ứng dụng tích phân tính thể tích
Tài liệu gồm 33 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề ứng dụng tích phân tính thể tích, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. 1. Tính thể tích vật thể. 2. Tính thể tích vật tròn xoay sinh bởi diện tích S quay quanh trục Ox. 3. Tính thể tích vật tròn xoay sinh bởi diện tích S quay quanh trục Oy. 4. Ứng dụng tính thể tích khối cầu, khối chỏm cầu và một số hình đặc biệt. 5. Hệ thống Ví dụ minh họa. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm ứng dụng tích phân tính diện tích
Tài liệu gồm 45 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề ứng dụng tích phân tính diện tích, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT. 1. Công thức tính diện tích của hình phẳng giới hạn bởi hai đồ thị hàm số. 2. Ứng dụng tính diện tích hình tròn và hình Elip. B. VÍ DỤ MINH HỌA. C. BÀI TẬP TỰ LUYỆN. D. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm tích phân đặc biệt và nâng cao
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích phân đặc biệt và nâng cao, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. 1. Một số dạng tích phân đặc biệt. + Mệnh đề 1: Nếu f(x) là hàm số chẵn và liên tục trên đoạn [−a;a] thì a a a 0 f (x) dx 2 f (x) dx. + Mệnh đề 2: Nếu f(x) là hàm số lẻ và liên tục trên đoạn [−a;a] thì a a f (x) dx 0. + Mệnh đề 3: Nếu f(x) là hàm số chẵn và liên tục trên đoạn [−a;a] thì a a x a 0 f(x) dx f (x) dx m 1. + Mệnh đề 4: Nếu f(x) là hàm số liên tục trên [0;1] thì 2 2 0 0 f (sinx) dx f (cosx) dx. 2. Một số dạng tích phân vận dụng cao. + Dạng 1. Bài toán tích phân liên quan đến các biểu thức sau. + Dạng 2. Bài toán tích phân liên quan đến các biểu thức sau. + Dạng 3. Bài toán tổng quát. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.