Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2019 lần 3 trường Kinh Môn - Hải Dương

giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử Toán THPT Quốc gia 2019 lần 3 trường Kinh Môn – Hải Dương, kỳ thi nhằm giúp các em học sinh lớp 12 của nhà trường được tiếp tục thử sức và rèn luyện, nhằm có sự chuẩn bị tốt nhất cho kỳ thi chính thức THPT Quốc gia môn Toán năm 2019 sắp tới. Đề thi thử Toán THPT Quốc gia 2019 lần 3 trường Kinh Môn – Hải Dương có mã đề 101, đề gồm 06 trang với 50 câu trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề thi thử Toán THPT Quốc gia 2019 lần 3 trường Kinh Môn – Hải Dương : + Một chiếc đồng hồ cát như hình vẽ, gồm hai phần đối xứng nhau qua mặt nằm ngang và đặt trong một hình trụ. Thiết diện thẳng đứng qua trục của nó là hai parabol chung đỉnh và đối xứng nhau qua mặt nằm ngang. Ban đầu lượng cát dồn hết ở phần trên của đồng hồ thì chiều cao h của mực cát bằng 3/4 chiều cao của bên đó (xem hình). Cát chảy từ trên xuống dưới với lưu lượng không đổi 12,72 cm3/phút. Khi chiều cao của cát còn 4 cm thì bề mặt trên cùng của cát tạo thành một đường tròn chu vi 8pi cm (xem hình). Biết sau 10 phút thì cát chảy hết xuống phần bên dưới của đồng hồ. Hỏi chiều cao của khối trụ bên ngoài là bao nhiêu cm? [ads] + Trên đường tròn đặt 24 điểm cách đều nhau sao cho độ dài cung giữa hai điểm liền kề nhau đều bằng 1. Chọn ngẫu nhiên 8 điểm trong 24 điểm đó. Tính xác suất sao cho trong 8 điểm được chọn không có độ dài cung giữa hai điểm bất kỳ nào bằng 3 hoặc 8. + Ông An vừa bán một lô đất giá 1,2 tỷ đồng và ông đã đến ngân hàng để gửi hết số tiền ấy theo kì hạn 1 tháng với lãi suất kép là 0,54% một tháng. Mỗi tháng ông An rút ra 5 triệu đồng vào ngày ngân hàng tính lãi để chi tiêu. Hỏi sau 3 năm số tiền của ông An còn lại ở ngân hàng là bao nhiêu? (Giả sử lãi suất không thay đổi, kết quả làm tròn đến hàng nghìn).

Nguồn: toanmath.com

Đọc Sách

Đề thi thử TN THPT 2023 lần 3 môn Toán trường THPT Hàn Thuyên - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm học 2022 – 2023 lần 3 môn Toán trường THPT Hàn Thuyên, tỉnh Bắc Ninh; đề thi có đáp án trắc nghiệm các mã đề 001 002 003 004 005 006 007 008. Trích dẫn Đề thi thử TN THPT 2023 lần 3 môn Toán trường THPT Hàn Thuyên – Bắc Ninh : + Cho số phức z thay đổi thoả mãn z z i 4 4. Gọi S là tập hợp các số phức 2 8 w z z. Biết rằng 1 2 w w là hai số thuộc S sao cho 1 2 w w 2 khi đó mô đun của số phức 1 2 3 4 2 w w i đạt giá trị lớn nhất bằng? + Cho hình trụ có hai đáy là hai đường tròn có tâm O và O mặt phẳng P đi qua O và cắt đường tròn tâm O tại hai điểm A B sao cho tam giác OAB là tam giác đều và có diện tích 2 3 3a. Biết góc giữa mp P và mặt phẳng đáy bằng 0 30. Thể tích khối trụ bằng? + Trong không gian Oxyz, cho các điểm A 0 0 3 và B 2 3 5. Gọi P là mặt phẳng chứa đường tròn giao tuyến của hai mặt cầu 2 2 1 S x y z 1 1 3 25 với 2 S y z x y x 2 2 14 0. M N là hai điểm thuộc P sao cho MN 1. Giá trị nhỏ nhất của AM BN là?
Đề thi thử TN THPT 2023 môn Toán lần 2 cụm liên trường THPT - Quảng Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 2 cụm liên trường THPT trực thuộc sở GD&ĐT tỉnh Quảng Nam (mã đề 101). Trích dẫn Đề thi thử TN THPT 2023 môn Toán lần 2 cụm liên trường THPT – Quảng Nam : + Trong không gian Oxyz cho đường thẳng 1 1 x t d y y t và mặt phẳng 2 3 0 P x z. Biết đường thẳng đi qua O(0;0;0), có một vectơ chỉ phương u a b 1, vuông góc với đường thẳng d và hợp với mặt phẳng P một góc lớn nhất. Hỏi điểm nào sau đây thuộc đường thẳng? + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a góc 0 BAD 120. Cạnh bên SA a 3 và vuông góc với đáy ABCD. Bán kính mặt cầu ngoại tiếp khối chóp SACD nhận giá trị? + Trong không gian Oxyz cho hai điểm M 100 và N 113. Mặt phẳng vuông góc với đường thẳng ON và cách điểm M một khoảng 11. Biết phương trình mặt phẳng có dạng x y z c 3 0 c c thuộc tập hợp nào sau đây?
Đề thi thử Toán TN THPT 2023 lần 2 trường chuyên Lê Khiết - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm 2023 lần 2 trường THPT chuyên Lê Khiết, tỉnh Quảng Ngãi (mã đề 101). Trích dẫn Đề thi thử Toán TN THPT 2023 lần 2 trường chuyên Lê Khiết – Quảng Ngãi : + Trong không gian Oxyz cho hai điểm A 0 2 1 B 1 2 3 và mặt phẳng P x y 2 1 0. Đường thẳng d đi qua điểm A, song song với mặt phẳng P sao cho khoảng cách từ B đến d nhỏ nhất có một vectơ chỉ phương là u a b 1. Khi đó a b 2 bằng? + Trong không gian Oxyz cho hai mặt phẳng P x y z Q x y z 2 2 1 0 và các điểm A B 1 1 2 3. Gọi S là mặt cầu bất kỳ qua A và tiếp xúc với cả hai mặt phẳng P Q. Gọi I là tâm của mặt cầu S. Giá trị lớn nhất của độ dài đoạn thẳng BI thuộc khoảng nào dưới đây? + Gọi M N lần lượt là điểm biểu diễn của số phức z có phần thực không âm và số phức w thỏa mãn 2 2 4 z w w i 4 2. Giá trị nhỏ nhất của khoảng cách MN bằng a b với a a b b tối giản. Khi đó a b 2 bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 sở GDĐT Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm 2023 môn Toán lần 2 sở Giáo dục và Đào tạo tỉnh Bắc Giang; đề thi có đáp án mã đề 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124; kỳ thi được diễn ra vào thứ Ba ngày 23 tháng 05 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 sở GD&ĐT Bắc Giang : + Trong một hòm phiếu có 10 lá phiếu ghi các số tự nhiên từ 1 đến 10 (mỗi lá ghi một số, không có hai lá phiếu nào được ghi cùng một số). Rút ngẫu nhiên cùng lúc hai lá phiếu. Tính xác suất để hiệu hai số ghi trên hai lá phiếu rút được là một số lẻ lớn hơn hoặc bằng 5. + Cho hàm số f x có đạo hàm liên tục trên và thỏa mãn các điều kiện f (0 0) 2 3 x f x xf x x 1 x. Khi đó diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y fx trục hoành và đường thẳng x = 3 xấp xỉ giá trị nào nhất trong các giá trị sau đây? + Cho hình nón có đỉnh S bán kính đáy bằng a 3. Một mặt phẳng đi qua đỉnh của hình nón, cắt hình nón theo một thiết diện là tam giác vuông cân SAB. Biết khoảng cách giữa AB và trục của hình nón bằng a. Tính thể tích của khối nón giới hạn bởi hình nón đã cho theo a.