Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề làm quen với biến cố Toán 7

Tài liệu gồm 44 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề làm quen với biến cố trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. – Nắm được các khái niệm, thuật ngữ: + Định nghĩa biến cố: Các hiện tượng, sự kiện trong tự nhiên, cuộc sống được gọi chung là “biến cố”. + Biến cố chắc chắn là biến cố biết trước được luôn xảy ra. + Biến cố không thể là biến cố biết trước được không bao giờ xảy ra. + Biến cố ngẫu nhiên là biến cố không thể biết trước được có xảy ra hay không. – Làm quen với khái niệm biến cố ngẫu nhiên, biến cố chắc chắn, biến cố không thể trong một số ví dụ đơn giản. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Kiểm tra xem đâu là biến cố chắc chắn, biến cố không thể, biến cố ngẫu nhiên đối với các hiện tượng, sự kiện xảy ra. Dựa vào định nghĩa của các loại biến cố chắc chắn, biến cố không thể, biến cố ngẫu nhiên để xác định xem hiện tượng, sự kiện đã cho thuộc loại nào. Dạng 2 . Tìm ra được biến cố chắc chắn, biến cố không thể, biến cố ngẫu nhiên của sự vật hiện tượng. Nêu thêm các điều kiện để biến cố đã cho trở thành biến cố không thể, ngẫu nhiên, chắc chắn. Và các bài toán tổng hợp. Được biết thông tin sau: Có thể liệt kê các kết quả có thể xảy ra đối với một biến cố thành một tập hợp. Mỗi phần tử của tập hợp được gọi là một kết quả thuận lợi cho biến cố đó. Sở dĩ ta gọi những kết quả đó là thuận lợi cho biến cố đã cho vì chúng đáp ứng được mong muốn thể hiện trong biến cố. Sử dụng thông tin này để giải các bài tập. PHẦN III . BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tập hợp các số thực Toán 7
Tài liệu gồm 34 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tập hợp các số thực trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . TẬP HỢP SỐ THỰC – SO SÁNH CÁC SỐ HỮU TỈ. – Sử dụng kí hiệu của tập hợp số: + Bạn cần nhớ: quan hệ giữa các tập hợp số. + Tập hợp các số tự nhiên kí hiệu là N. + Tập hợp các số nguyên kí hiệu là Z. + Tập hợp các số hữu tỉ kí hiệu là Q. + Tập hợp các số vô tỉ kí hiệu là I. + Tập hợp các số thực kí hiệu là R. – So sánh các số thực: + Việc so sánh các số thực được làm tương tự như so sánh các số hữu tỉ viết dưới dạng số thập phân. + Đặc biệt, với a b là hai số thực dương thì: a b a b. Dạng 2 . GIÁ TRỊ TUYỆT ĐỐI CỦA MỘT SỐ THỰC. – Giá trị tuyệt đối của một số hữu tỉ x (kí hiệu là |x|) được xác định như sau: + |x| = x khi x >= 0. + |x| = -x khi x < 0. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề số vô tỉ, căn bậc hai số học Toán 7
Tài liệu gồm 29 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề số vô tỉ, căn bậc hai số học trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Tính căn bậc hai. – Các phép toán trong tập hợp các số vô tỉ cũng có các tính chất tương tự các phép toán trong tập hợp các số hữu tỉ. – Để thực hiện phép tính có chứa căn bậc 2, ta có thể làm như sau: + Bước 1. Tính các giá trị căn bậc hai (có thể dùng định nghĩa hoặc máy tính). + Bước 2. Thực hiện đúng thứ tự phép tính. Dạng 2 . Tìm x. – Ta sử dụng các tính chất sau: + Nếu x a thì 2 x a (với a 0). + Nếu 2 x a (với a 0) thì x a hoặc x a và ngược lại. Dạng 3 . So sánh các căn bậc hai. – Sử dụng tính chất: + Với hai số dương bất kì a và b thì a b a b. + Nếu a m m b thì a b. + Nếu x y z t thì x z y t. Dạng 4 . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức chứa căn bậc hai. – Áp dụng tính chất cơ bản sau: x 0 với mọi x 0. Dấu “=” xảy ra khi x = 0. Dạng 5 . Tìm giá trị nguyên của x để biểu thức nhận giá trị nguyên. – Tìm điều kiện của x để biểu thức nhận giá trị nguyên, ta thường làm như sau: + Bước 1. Tách phần nguyên: Tách tử theo mẫu sao cho A có dạng tổng của một số nguyên và một phân số có tử số nguyên. + Bước 2. Tìm x: Vận dụng tính chất sau: m A n với m n 0. Để A nhận giá trị nguyên thì m n hay n m. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề làm quen với số thập phân vô hạn tuần hoàn Toán 7
Tài liệu gồm 19 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề làm quen với số thập phân vô hạn tuần hoàn trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 : Nhận biết được phân số viết được dưới dạng số thập phân hữu hạn hay vô hạn tuần hoàn. – Viết phân số dưới dạng phân số tối giản với mẫu dương. – Phân tích mẫu số đó ra thừa số nguyên tố. – Nếu mẫu này không có ước nguyên tố khác 2 và 5 thì phân số viết được dưới dạng số thập phân hữu hạn. – Nếu mẫu này có ước nguyên tố khác 2 và 5 thì phân số viết được dưới dạng số thập phân vô hạn tuần hoàn. Dạng 2 : Nhận biết được số thập phân hữu hạn và số thập phân vô hạn tuần hoàn, xác định được chu kì của một số thập phân vô hạn tuần hoàn. Viết phân số dưới dạng số thập phân và ngược lại. – Căn cứ vào khái niệm để nhận biết số thập phân hữu hạn hay vô hạn tuần hoàn. – Xét các chữ số sau dấu phẩy để xác định chu kỳ nếu là số thập phân vô hạn tuần hoàn. – Viết phân số dưới dạng số thập phân (thực hiện phép chia lấy tử chia cho mẫu, có thể sử dụng máy tính cầm tay để hỗ trợ). – Viết số thập phân dưới dạng phân số: + Viết dưới dạng phân số thập phân rối rút gọn đến tối giản nếu là số thập phân hữu hạn. + Nếu số thập phân vô hạn tuần hoàn có chu kì bắt đầu ngay sau dấu phẩy thì ta lấy chu kì làm tử còn mẫu là một số gồm các chữ số 9 với số chữ số 9 bằng số chữ số của chu kì. + Nếu số thập phân vô hạn tuần hoàn có chu kì không bắt đầu ngay sau dấu phẩy thì ta lấy số gồm các chữ số trước chu kì và chu kì trừ đi số gồm các chữ số trước chu kì là tử, còn mẫu là một số gồm các chữ số 9 kèm theo các chữ số 0, số chữ số 9 bằng số chữ số của chu kì, số chữ số 0 bằng số chữ số trước chu kì. Dạng 3 : Làm tròn số thập phân. – Áp dụng quy ước làm tròn số và độ chính xác cho trước. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề lũy thừa của một số hữu tỉ Toán 7
Tài liệu gồm 29 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề lũy thừa của một số hữu tỉ trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÝ THUYẾT. 1. Định nghĩa lũy thừa với số mũ tự nhiên. 2. Tích và thương của hai lũy thừa cùng cơ số. 3. Lũy thừa của lũy thừa. 4. Lũy thừa của một tích, thương. 5. Lũy thừa với số mũ nguyên âm. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép tính về lũy thừa. Vận dụng định nghĩa và quy tắc phép tính ở trên để giải. Dạng 2 . Tìm thành phần chưa biết. 1. Để tìm số hữu tỉ x trong cơ số của một lũy thừa, ta thường biến đổi hai vế của đẳng thức về lũy thừa cùng số mũ, rồi sử dụng nhận xét. 2. Để tìm số x ở số mũ của lũy thừa, ta thường biến đổi hai vế của đẳng thức về lũy thừa cùng cơ số, rồi sử dụng nhận xét. Dạng 3 . So sánh hai lũy thừa. Để so sánh hai lũy thừa ta có thể biến đổi đưa hai lũy thừa về cùng cơ số hoặc đưa hai lũy thừa về cùng số mũ, rồi sử dụng nhận xét. PHẦN III . BÀI TẬP TỰ LUYỆN.