Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG Toán 8 năm 2022 - 2023 phòng GDĐT Lang Chánh - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Lang Chánh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 01 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Lang Chánh – Thanh Hóa : + Giải phương trình nghiệm nguyên dương: 2 2 x y xy 3. Cho x y là các số nguyên thỏa mãn đẳng thức 2 2 3 12 1 x y. Chứng minh rằng 2 2 x y chia hết cho 40. + Cho đoạn thẳng AB. Kẻ tia Bx vuông góc với AB tại B. Trên tia Bx lấy điểm C (C khác B). Kẻ BH vuông góc với AC (điểm H thuộc AC). Gọi M là trung điểm của AB. 1. Chứng minh rằng: HA.HC = HB2 2. Kẻ HD vuông góc với BC (D thuộc BC). Gọi I là giao điểm của AD và BH. Chứng minh rằng ba điểm C, I, M thẳng hàng. 3. Giả sử AB cố định, điểm C thay đổi trên tia Bx. Biết 1 BM AB HA CH IC MI. Tìm vị trí của điểm C trên tia Bx sao cho diện tích tam giác ABI lớn nhất. + Cho các số abc không âm thỏa mãn abc 3. Tìm giá trị nhỏ nhất của biểu thức 333.

Nguồn: toanmath.com

Đọc Sách

Đề Olympic Toán 8 năm 2021 - 2022 phòng GDĐT Ứng Hòa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 14 tháng 04 năm 2022. Trích dẫn đề Olympic Toán 8 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội : + Một chiếc thuyền khởi hành từ bến sông A, sau đó 5 giờ 20 phút một chiếc ca nô cũng chạy từ bến sông A đuổi theo và gặp thuyền tại một điểm cách A 20km. Tính vận tốc của thuyền? Biết rằng ca nô chạy nhanh hơn thuyền 12km/h. + Cho tam giác ABC nhọn, các đường cao AA’, BB’, CC’, H là trực tâm. 1) Chứng minh CHA’ đồng dạng AHC’. 2) Tính tổng HA’ HB’ HC’ AA’ BB’ CC’. 3) Gọi AI là phân giác trong của tam giác ABC; IM, IN thứ tự là phân giác của góc AIC và góc AIB. Chứng minh rằng: AN.BI.CM = BN.IC.AM. + Tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dương và số đo diện tích bằng số đo chu vi.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thành phố Bắc Ninh, tỉnh Bắc Ninh. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT thành phố Bắc Ninh : + Cho hai số nguyên ab thỏa mãn đồng thời các điều kiện: a b là số nguyên chẵn và 2 2 4 3 11 a ab b chia hết cho 5. Chứng minh 2 2 a b chia hết cho 20. + Cho đa thức 2 f x x 4. Giả sử đa thức 5 2 P x x ax b có 5 nghiệm là 1 2 3 4 5 x x x x x. Tìm giá trị nhỏ nhất của 1 2 3 4 5 A f x f x f x f x f x. + Cho hình vuông ABCD tâm O, lấy M trên đoạn OC, không trùng O. Gọi S là điểm đối xứng với B qua M, đường thẳng BS cắt CD tại L. Gọi E là giao điểm của DM với BC F là giao điểm của AE và CD G là giao điểm của DE và BF. Gọi I và K theo thứ tự là giao điểm của AB và CG và DG. Chứng minh rằng: a) SL DS BL BD b) IE song song với BD c) AE vuông góc với CG d) DL BS BD DS.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Diễn Châu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi khảo sát chất lượng học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Diễn Châu – Nghệ An : + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi D và E lần lượt là hình chiếu vuông góc của H trên AB, AC. Gọi M và N lần lượt là trung điểm của BH, CH. Đường thẳng DE cắt đường thẳng BC tại F. Gọi O là giao điểm của AH và DE. a) Chứng minh rằng: AH2 = BH.CH và AD.AB = AE.AC b) Giả sử BC cố định, A di động nhưng vẫn thỏa mãn BAC = 90°. Chứng minh rằng, đường thẳng đi qua O và vuông góc với AF luôn đi qua 1 điểm cố định. c) Chứng minh rằng trực tâm của tam giác AMN là trung điểm của OH. + Chứng minh rằng, trong 29 số nguyên dương khác nhau nhỏ hơn 100 ta luôn chọn được 2 số có ước chung lớn nhất khác 1. + Cho a, b, c, d là các số nguyên dương thỏa mãn a3 + b3 = 5c3 + 11d3. Chứng minh rằng: a + b + c + d chia hết cho 6.
Đề học sinh giỏi huyện Toán 8 năm 2021 - 2022 phòng GDĐT Kỳ Anh - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Kỳ Anh, tỉnh Hà Tĩnh. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2021 – 2022 phòng GD&ĐT Kỳ Anh – Hà Tĩnh : + Quãng đường từ Khu kinh tế Vũng Áng đến thành phố Vinh dài 120 km. Một người dự định đi xe máy từ Vũng Áng đến thành phố Vinh với vận tốc không đổi. Sau khi đi được 45 phút, người ấy dừng lại nghỉ 15 phút. Để đến thành phố Vinh đúng thời gian đã dự định, người đó phải tăng vận tốc thêm 5 km/h trên quãng đường còn lại. Tính vận tốc của người đi xe máy theo dự định ban đầu. + Cho tam giác ABC có AM là đường trung tuyến. Trên AM lấy điểm I. Tia BI cắt AC tại E. Biết S_AIE = 4cm2; S_CIE = 12cm2. Tính diện tích tam giác ABC. + Trong lớp học có hai tổ chọn ra những bạn có năng khiếu bóng bàn để thi đấu giao hữu. Mỗi đấu thủ của tổ này phải thi đấu lần lượt với từng đấu thủ của tổ kia. Biết rằng số trận đấu diễn ra gấp hai lần tổng số đấu thủ của cả hai tổ. Tìm số đấu thủ của mỗi tổ.