Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề hệ phương trình bậc nhất hai ẩn chứa tham số

Nội dung Tài liệu lớp 9 môn Toán chủ đề hệ phương trình bậc nhất hai ẩn chứa tham số Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề hệ phương trình bậc nhất hai ẩn chứa tham sốA. Tóm tắt lý thuyết:B. Bài tập và các dạng toán: Tài liệu học Toán lớp 9 chủ đề hệ phương trình bậc nhất hai ẩn chứa tham số Tài liệu này bao gồm 10 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề hệ phương trình bậc nhất hai ẩn chứa tham số trong chương trình môn Toán lớp 9. Đồng thời, tài liệu cũng cung cấp đáp án và lời giải chi tiết cho các bài tập. A. Tóm tắt lý thuyết: Trong phần này, bạn sẽ được hướng dẫn cách giải hệ phương trình bậc nhất hai ẩn chứa tham số. Phương pháp thế và cộng đại số thường được sử dụng để giải hệ phương trình. Sau khi áp dụng phương pháp này, bạn sẽ thu được một phương trình mới chỉ chứa một ẩn, và số nghiệm của phương trình mới đó sẽ bằng số nghiệm của hệ phương trình ban đầu. Đồng thời, bạn cũng sẽ được hướng dẫn cách biện luận số nghiệm của phương trình bậc nhất một ẩn ax + b = 0, với các trường hợp khác nhau của a và b. B. Bài tập và các dạng toán: Phần này chứa các dạng toán phổ biến liên quan đến hệ phương trình bậc nhất hai ẩn chứa tham số. Bạn sẽ được hướng dẫn cách giải và biện luận hệ phương trình, cũng như tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Các bài tập về nhà cũng được cung cấp để bạn ôn tập và kiểm tra kiến thức sau khi học xong phần này. File WORD của tài liệu này dành cho quý thầy cô giáo để sử dụng trong dạy và học, giúp việc truyền đạt kiến thức trở nên dễ dàng và linh hoạt hơn.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề tỉ số lượng giác của góc nhọn
Tài liệu gồm 15 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề tỉ số lượng giác của góc nhọn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định nghĩa. 2. Tỉ số lượng giác của hai góc phụ nhau. 3. Một số hệ thức liên hệ giữa các tỉ số lượng giác. 4. Bảng tỷ số lượng giác của một số góc đặc biệt. B. Bài tập và các dạng toán. Dạng toán: Tính tỉ số lượng giác của góc nhọn, tính cạnh, tính góc. Cách giải: Sử dụng các kiến thức trong phần tóm tắt lý thuyết. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai
Tài liệu gồm 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đưa thừa số ra ngoài dấu căn. 2. Đưa thừa số vào trong dấu căn. 3. Khử mẫu của biểu thức lấy căn. 4. Trục căn thức ở mẫu. B. Bài tập và các dạng toán. Dạng 1: Đưa thừa số ra ngoài dấu căn hoặc vào trong dấu căn. Dạng 2: So sánh các căn bậc hai. Dạng 3: Rút gọn biểu thức chứa căn bậc hai. Dạng 4: Khử mẫu của biểu thức dưới dấu căn bậc hai. Dạng 5: Trục căn thức ở mẫu. Dạng 6: Sử dụng các phép biến đổi căn thức bậc hai để giải phương trình. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề căn bậc ba
Tài liệu gồm 20 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn bậc ba trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. I. Căn bậc ba. II. Căn bậc n. B. Bài tập và các dạng toán. Dạng 1: Thực hiện phép tính có chứa căn bậc ba. Dạng 2: Khử mẫu thức chứa căn bậc ba. Dạng 3: So sánh các căn bậc ba. Dạng 4: Giải phương trình chứa căn bậc ba. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề căn bậc hai
Tài liệu gồm 25 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm căn bậc hai. 2. Khái niệm về căn bậc hai số học. 3. So sánh các căn bậc hai số học. B. Bài tập áp dụng và các dạng toán. Dạng 1 : Tìm căn bậc hai và căn bậc hai số học của một số. Cách giải: Ta sử dụng các kiến thức sau: – Nếu a > 0 thì các căn bậc hai của a là ±a. – Căn bậc hai số học của a là a. – Nếu a = 0 thì căn bậc hai của a và căn bậc hai số học của a cùng bằng 0. – Nếu a < 0 thì a không có căn bậc hai và do đó không có căn bậc hai số học. Dạng 2 : Tìm số có căn bậc hai số học là một số cho trước. Cách giải: Với số thực a ≥ 0 cho trước, ta có 2 a chính là số có căn bậc hai số học bằng a. Dạng 3 : Tính giá trị của biểu thức chứa căn bậc hai. Cách giải: Ta sử dụng kiến thức: Với số a ≥ 0 ta có 2 2 a aa a. Dạng 4 : So sánh các căn bậc hai số học. Cách giải: Với: a b ab a b. Dạng 5 : Tìm giá trị của x thỏa mãn điều kiện cho trước. Cách giải: Ta sử dụng chú ý sau: 2 2 xa x a 8. Với số a ≥ 0 ta có: 2 xa xa. Dạng 6 : Chứng minh một số là số vô tỷ. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.