Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT Cầu Giấy - Hà Nội

Thứ Bảy ngày 31 tháng 10 năm 2020, phòng Giáo dục và Đào tạo quận Cầu Giấy, thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi lớp 9 cấp quận môn Toán năm học 2020 – 2021. Đề học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT Cầu Giấy – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT Cầu Giấy – Hà Nội : + Giải phương trình sau: x^2(x^2 + 2) = 12 – x√(2x^2 + 4). + Cho a, b, c, d là các số tự nhiên thỏa mãn điều kiện a^2 + b^2 + c^2 = d^2. Chứng minh rằng a, b, c, d không thể đồng thời là các số lẻ. + Cho hình bình hành ABCD (A nhọn, AB > AD), hai đường chéo AC và BD cắt nhau tại O. Đường thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua A và vuông góc với BD tại điểm P, từ P vẽ PM vuông góc với BC (M thuộc đường thẳng BC) và PN vuông góc với CD (N thuộc đường thẳng CD). Gọi S là hình chiếu của B trên AC. a. Chứng minh rằng CBS đồng dạng PCM và ACP đồng dạng BSO. b. Chứng minh rằng AB^2 – BC^2 = 2CP.BS. c. Chứng minh rằng M, N, O thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán THCS năm 2021 - 2022 sở GDĐT Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi (HSG) môn Toán THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Yên Bái; kỳ thi được diễn ra vào thứ Bảy ngày 02 tháng 04 năm 2022.
Đề thi HSG Toán 9 năm 2021 - 2022 phòng GDĐT Cầu Ngang - Trà Vinh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Cầu Ngang, tỉnh Trà Vinh. Trích dẫn đề thi HSG Toán 9 năm 2021 – 2022 phòng GD&ĐT Cầu Ngang – Trà Vinh : + Cho tam giác ABC cân tại A (BAC = 90°) biết đường cao AD và trực tâm H. Tính độ dài AD biết AH = 14cm và BH = CH = 30cm. + Quãng đường AB gồm một đoạn lên dốc dài 4km và một đoạn xuống dốc dài 5km. Một người đi xe đạp từ A đến B hết 40 phút và đi từ B về A hết 41 phút (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc và lúc xuống dốc. + Cho tam giác đều ABC nội tiếp đường tròn (O). Trên cung BC không chứa điểm A ta lấy điểm P bất kỳ (P khác B và P khác C). Các đoạn PA và BC cắt nhau tại Q. a) Giả sử D là một điểm trên đoạn PA sao cho PD = PB. Chứng minh rằng tam giác PDB đều b) Chứng minh rằng PA = PB + PC c) Chứng minh hệ thức 1/PQ = 1/PB + 1/PC.
Đề thi học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Sơn La; kỳ thi được diễn ra vào ngày 26 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Sơn La : + Cho đường tròn (O) và đường thẳng d cố định ((O) và d không có điểm chung). Điểm P di động trên đường thẳng d, từ P vẽ hai tiếp tuyến PA, PB (A, B thuộc đường tròn (O)), PO giao AB tại I. Gọi H là chân đường vuông góc hạ từ điểm A đến đường kính BC, E là giao điểm của hai đường thẳng CP và AH. Gọi F là giao điểm thứ hai của đường thẳng CP và đường tròn (O). Chứng minh rằng: a) PF.PC = PI.PO. b) E là trung điểm của đoạn thẳng AH. c) Điểm I luôn thuộc một đường cố định khi P di động trên d. + Tìm nghiệm nguyên của phương trình: 2x2y + 3xy + y = x2 + 2xy2 + 3x + 1. + Cho ba số thực x, y, z thỏa mãn các điều kiện: x > 0, 5×2 = yz, x + y + z = xyz. Chứng minh rằng?
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 - 2022 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Nghệ An; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 – 2022 sở GD&ĐT Nghệ An : + Cho các số thực không âm a b c thỏa mãn a + b + c =< 3. Tìm giá trị nhỏ nhất của biểu thức P. + Cho đường tròn (O) và dây cung BC cố định (BC khác đường kính). Điểm A thuộc cung lớn BC sao cho tam giác ABC nhọn và AB < AC. Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, AB lần lượt tại D, E. Đường thẳng AD cắt đường tròn (I) tại điểm thứ hai là M; BM cắt đường tròn (I) tại điểm thứ hai là Q; BI cắt DE tại P. a) Chứng minh tứ giác IPQM nội tiếp. b) Chứng minh BME = DMP. c) Đường tròn đi qua C tiếp xúc với Al tại I cắt BC tại H và cắt (O) tại điểm thứ hai là K. Chứng minh khi A di động trên (O) thì đường thắng HK luôn đi qua một điểm cố định. + Trong một hoạt động ngoại khóa có 20 giáo viên và 80 học sinh đến từ nhiều nơi tham gia. Biết rằng mỗi giáo viên quen với ít nhất 65 người và mỗi học sinh quen với tối đa 12 người (quan hệ quen được xem là có tính 2 chiều: Người A quen người B thì người B cũng quen người A). Ban tổ chức xếp họ thành 41 nhóm. Hỏi ban tổ chức có thể xếp sao cho nhóm nào cũng có 2 người quen nhau không? Vì sao?