Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG tỉnh Toán 12 năm học 2019 - 2020 sở GDĐT Bắc Ninh

Sáng thứ Năm ngày 28 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2019 – 2020. Đề thi chọn HSG tỉnh Toán 12 năm học 2019 – 2020 sở GD&ĐT Bắc Ninh mã đề 898 gồm có 06 trang, đề có 50 câu trắc nghiệm, thời gian học sinh làm bài là 90 phút. Trích dẫn đề thi chọn HSG tỉnh Toán 12 năm học 2019 – 2020 sở GD&ĐT Bắc Ninh : + Trong không gian với hệ tọa độ Oxyz, cho ba mặt cầu có phương trình là x^2 + y^2 + z^2 = 1; (x – 2)^2 + (y – 1)^2 + (z + 2)^2 = 4 và (x + 4)^2 + y^2 + (z – 3)^2 = 16. Gọi M là điểm di động ở ngoài ba mặt cầu và X, Y, Z là các tiếp điểm của các tiếp tuyến vẽ từ M đến ba mặt cầu sao cho MX = MY = MZ. Khi đó tập hợp các điểm M là đường thẳng d cố định. Hỏi d vuông góc với mặt phẳng nào? [ads] + Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 2020. Gọi (a) là mặt phẳng thay đổi vuông góc với AC và luôn có điểm chung với tất cả các mặt của hình lập phương. Gọi S, L lần lượt là diện tích và chu vi của thiết diện tạo bởi (a) với hình lập phương. Khẳng định nào sau đây đúng? A. S thay đổi, L không đổi. B. S không đổi, L không đổi. C. S thay đổi, L thay đổi. D. S không đổi, L thay đổi. + Trong không gian với hệ tọa độ Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có A(0; 0; 0) trùng với O, B(2; 0; 0), D(0; 3; 0), A'(0; 0; 3). Gọi (H) là tập tất cả các điểm M(x; y; z) với x, y, z nguyên, nằm trên hoặc trong hình hộp chữ nhật. Chọn ngẫu nhiên hai điểm E, F phân biệt thuộc (H). Xác suất để trung điểm I của EF cũng nằm trong (H) bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 - 2021 sở GDĐT Phú Yên
Thứ Ba ngày 30 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Phú Yên tổ chức kỳ thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2020 – 2021. Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT Phú Yên gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT Phú Yên : + Cho tam giác nhọn ABC có đường cao AM, trực tâm H. Đường thẳng BH cắt đường tròn đường kính AC tại D, E (BD < BE). Đường thẳng CH cắt đường tròn đường kính AB tại F, G (CF < CG). Đường tròn ngoại tiếp tam giác DMF cắt BC tại điểm thứ hai là N. a) Chứng minh rằng các điểm G, M, N, E cùng thuộc một đường tròn. b) Chứng minh rằng các đường thẳng BF, CD, HN đồng quy. + Cho P(x), Q(x) là các đa thức có hệ số cao nhất bằng 1 và các hệ số đều là số thực và deg P(x) = deg Q(x) = 2020. Chứng minh rằng nếu phương trình P(x) = Q(x) không có nghiệm thực thì phương trình P(x + 2021) = Q(x – 2021) có nghiệm thực. + Cho p là số nguyên tố khác 2; a và b là hai số tự nhiên lẻ sao cho (a + b) chia hết cho p, (a − b) chia hết cho (p – 1). Chứng minh rằng (a^b + b^a) chia hết 2p.
Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 - 2021 sở GDĐT Kiên Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi vòng tỉnh môn Toán THPT năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2021; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2020 - 2021 sở GDĐT Tiền Giang
Thứ Ba ngày 09 tháng 03 năm 2021, sở Giáo dục và Đào tạo Tiền Giang tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2020 – 2021 sở GD&ĐT Tiền Giang gồm 02 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề).
Đề thi học sinh giỏi Toán 12 năm 2020 - 2021 sở GDĐT thành phố Hồ Chí Minh
Thứ Tư ngày 17 tháng 03 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp thành phố môn Toán (thường) năm học 2020 – 2021. Đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút (không kể thời gian phát đề). Trích dẫn đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh : + Cho hàm số y = x^2 + x + 2021,5 có đồ thị (P). Tìm tập hợp các điểm M trong mặt phẳng mà từ M có thể kẻ được hai tiếp tuyến vuông góc đến (P). + Cho hình nón đỉnh S có đáy là đường tròn (O). Trong hình nón, người ta đặt một hình chóp D.ABC có đáy ABC là tam giác cân tại A, nội tiếp đường tròn (O) và BAC = 120°. Đỉnh D nằm trên mặt xung quanh của hình nón, các mặt bên của hình chóp tạo với đáy một góc bằng nhau. a) Chứng minh D thuộc đường thẳng SA. b) Tính thể tích khối nón khi thể tích khối chóp bằng 3. + Cho X = {n thuộc Z | -5 =< n =< 5} và X là tập hợp các hàm số f(x) = ax4 + bx2 + c có a, b, c thuộc X và f(x) có 3 điểm cực trị. Chọn ngẫu nhiên f(x) từ X, tính xác suất để gốc tọa độ O nằm hoàn toàn trong tam giác tạo thành từ ba điểm cực trị của đồ thị f(x).