Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi khảo sát Toán 12 năm học 2018 - 2019 trường THPT Minh Châu - Hưng Yên

Đề thi khảo sát Toán 12 năm học 2018 – 2019 trường THPT Minh Châu – Hưng Yên mã đề 001 gồm 6 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, nội dung đề chứa kiến thức Toán 10, Toán 11 và Toán 12 đã học nhằm kiểm tra kiến thức định kỳ của học sinh đồng thời giúp học sinh ôn tập sớm để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2019, đề thi có đáp án. Trích dẫn đề thi khảo sát Toán 12 năm học 2018 – 2019 trường THPT Minh Châu – Hưng Yên : + Cho hàm số y = f(x) có tập xác định là R và lim f(x) = y0 khi x → -∞. Tìm kết luận đúng trong các kết luận sau. A. Đồ thị hàm số có tiệm cận đứng là đường thẳng x = y0. B. Đồ thị hàm số có tiệm cận ngang là đường thẳng y = y0. C. Đồ thị hàm số không có tiệm cận. D. Đồ thị hàm số có cả tiệm cận đứng, tiệm cận ngang. [ads] + Trong mặt phẳng Oxy cho có phương trình các đường thẳng AB, AC lần lượt là 3x – y + 8 = 0 và x + y – 4 = 0. Đường tròn đi qua trung điểm các đoạn thẳng HA, HB, HC có phương trình là: x^2 + (y – 1/2)^2 = 25/4, trong đó H (a;b) là trực tâm tam giác ABC và xC < 5. Tính giá trị của biểu thức P = a + b. + Khẳng định nào sau đây đúng? A. Hình lăng trụ đứng có đáy là một đa giác đều là hình lăng trụ đều. B. Hình lăng trụ đứng là hình lăng trụ đều. C. Hình lăng trụ có đáy là một đa giác đều là hình lăng trụ đều. D. Hình lăng trụ tứ giác đều là hình lập phương.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát môn Toán 12 năm 2022 - 2023 trường THPT Triệu Quang Phục - Hưng Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng môn Toán 12 năm học 2022 – 2023 trường THPT Triệu Quang Phục, tỉnh Hưng Yên; đề thi mã đề 300 gồm 06 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm, thời gian làm bài 90 phút, không kể thời gian phát đề, đề thi có đáp án 300 – 301 – 302 – 303 – 304 – 305 – 306 – 307 – 308 – 309 – 310 – 311 – 312. Trích dẫn Đề khảo sát môn Toán 12 năm 2022 – 2023 trường THPT Triệu Quang Phục – Hưng Yên : + Mỗi hình dưới đây gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó). Hình 1 Hình 2 Hình 3 Hình 4 Hình nào không phải là đa diện lồi? A. Hình 3. B. Hình 4. C. Hình 2. D. Hình 1. + Hình đa diện nào dưới đây không có tâm đối xứng? Tứ diện đều. Bát diện đều. Hình lập phương. Lăng trụ lục giác đều. A. Bát diện đều. B. Khối lập phương C. Khối tứ diện đều. D. Lăng trụ lục giác đều. + Khối đa diện nào sau đây có số mặt nhỏ nhất? Khối tứ diện đều. Khối chóp tứ giác. Khối lập phương. Khối 12 mặt đều. A. Khối chóp tứ giác. B. Khối tứ diện đều. C. Khối lập phương. D. Khối 12 mặt đều.
Đề khảo sát lần 1 Toán 12 năm 2022 - 2023 trường THPT Yên Phong 2 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng lần 1 môn Toán 12 năm học 2022 – 2023 trường THPT Yên Phong số 2, tỉnh Bắc Ninh; đề thi gồm 07 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề), đề thi có đáp án mã đề 001 002 003 004. Trích dẫn Đề khảo sát lần 1 Toán 12 năm 2022 – 2023 trường THPT Yên Phong 2 – Bắc Ninh : + Người ta muốn thiết kế một bể cá bằng kính không có nắp với thể tích 3 72dm, chiều cao là 3dm. Một vách ngăn (cùng bằng kính) ở giữa chia bể cá thành hai ngăn với các kích thước ab (đơn vị dm) như hình vẽ. Tính ab để bể cá tốn ít nguyên liệu nhất (tính cả tấm kính ở giữa), coi bề dày các tấm kính như nhau và không ảnh hưởng đến thể tích của bể. + Một đoàn cứu trợ lũ lụt đang ở vị trí A của một tỉnh miền trung muốn đến xã C để tiếp tế lương thực và thuốc men. Để đi đến C, đoàn cứu trợ phải chèo thuyền từ A đến vị trí D với vận tốc 4 km h rồi đi bộ đến vị trí C với vận tốc 6 km h. Biết A cách B một khoảng 5km, B cách C một khoảng 7km (hình vẽ). Hỏi vị trí điểm D cách A bao xa để đoàn cứu trợ đi đến xã C nhanh nhất? + Mặt phẳng A BC chia khối lăng trụ ABC A B C thành các khối đa diện nào? A. Một khối chóp tứ giác và một khối chóp tam giác. B. Hai khối chóp tam giác. C. Hai khối chóp tứ giác. D. Một khối chóp tam giác và một khối chóp tứ ngũ giác.
Đề khảo sát đầu năm Toán 12 năm 2022 - 2023 trường THPT Quốc Oai - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng đầu năm môn Toán 12 năm học 2022 – 2023 trường THPT Quốc Oai, thành phố Hà Nội (mã đề 412). Trích dẫn Đề khảo sát đầu năm Toán 12 năm 2022 – 2023 trường THPT Quốc Oai – Hà Nội : + Hai người ngang tài ngang sức tranh chức vô địch của một cuộc thi cờ tướng. Người giành chiến thắng là người đầu tiên thắng được 5 ván cờ. Tại thời điểm người chơi thứ nhất đã thắng được 4 ván và người chơi thứ hai mới thắng hai ván, tính xác suất để người thứ nhất giành chiến thắng. + Trong kỳ thi THPT Quốc Gia, mỗi phòng thi gồm 24 thí sinh được sắp xếp vào 24 bàn khác nhau. Bạn Nam là một thí sinh dự thi, bạn đăng ký 4 môn thi và cả 4 lần thi đều thi tại một phòng duy nhất. Giả sử giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên, tính xác xuất để trong 4 lần thi thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí. + Trường THPT Quốc Oai muốn chọn ban đại diện cha mẹ học sinh gồm 1 chủ tịch, 1 phó chủ tịch, 1 thư ký và 3 ủy viên từ 44 trưởng ban đại diện của 44 lớp. Hỏi có bao nhiêu cách chọn ban đại diện?
Đề thi công bằng Toán 12 lần 1 năm 2022 - 2023 trường chuyên KHTN - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi công bằng môn Toán 12 lần 1 năm học 2022 – 2023 trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội; kỳ thi được diễn ra vào thứ Ba ngày 11 tháng 10 năm 2022. Trích dẫn Đề thi công bằng Toán 12 lần 1 năm 2022 – 2023 trường chuyên KHTN – Hà Nội : + Một nhóm gồm 6 nam và 4 nữ. Chọn ngẫu nhiên bốn người. a) Tính xác suất để bốn người được chọn đều là nam. b) Tính xác suất để bốn người được chọn có cả nam và nữ. + Trong không gian với hệ toạ độ Oxyz, cho bốn điểm A B C 1 1 2 0 1 1 1 1 0 và D 0 0 8. a) Chứng minh rằng bốn điểm A, B, C, D lập thành một tứ diện. b) Viết phương trình mặt phẳng đi qua ba điểm A B C. c) Viết phương trình mặt phẳng (P) song song với mặt phẳng (ABC) cắt các cạnh DA DB DC tương ứng tại A B C sao cho 1 8 V V DA B DABC. + Cho hàm số f x có đạo hàm f x là hàm liên tục và có bảng biến thiên như sau. Tìm số điểm cực trị của hàm số 3 2 y f x f x f x 2.