Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề giải hệ phương trình bằng phương pháp cộng đại số

Nội dung Tài liệu lớp 9 môn Toán chủ đề giải hệ phương trình bằng phương pháp cộng đại số Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề giải hệ phương trình Tài liệu học Toán lớp 9 chủ đề giải hệ phương trình Để giúp các bạn học sinh lớp 9 nắm vững kiến thức và kỹ năng giải hệ phương trình bằng phương pháp cộng đại số, tài liệu này cung cấp một cách tổng quan và chi tiết về chủ đề này. Tài liệu gồm 20 trang, bao gồm: A. Tóm tắt lý thuyết: Đây là phần tóm lược những kiến thức cơ bản cần nhớ khi giải hệ phương trình bằng phương pháp cộng đại số. B. Bài tập và các dạng toán: Phần này bao gồm các dạng toán thường gặp khi giải hệ phương trình bằng phương pháp cộng đại số. Cụ thể: Dạng 1: Giải hệ phương trình bằng phương pháp cộng đại số, với các cách giải cụ thể như trừ vế với vế khi hệ số của ẩn bằng nhau, cộng vế với vế khi hệ số của ẩn đối nhau, hoặc nhân vế với số thích hợp. Dạng 2: Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn, và cách giải chi tiết từng bước. Dạng 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ, với các bước hướng dẫn chi tiết. Dạng 4: Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước, và cách giải theo các kiến thức đã học. Phần cuối cùng của tài liệu là Bài tập về nhà, giúp học sinh ôn tập và củng cố kỹ năng giải toán sau khi học xong tài liệu. Trong tài liệu, đáp án và lời giải chi tiết được cung cấp để học sinh có thể tự kiểm tra và tự học. Đây là tài liệu hữu ích để giúp học sinh lớp 9 nắm vững kiến thức và kỹ năng giải hệ phương trình bằng phương pháp cộng đại số, từ đó tự tin hơn khi làm bài tập và kiểm tra.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề phương trình quy về phương trình bậc hai
Tài liệu gồm 39 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề phương trình quy về phương trình bậc hai, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 7. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Phương trình trùng phương. 2. Phương trình chứa ẩn ở mẫu thức. 3. Phương trình đưa về dạng tích. 4. Một số dạng khác của phương trình thường gặp. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Giải phương trình trùng phương. Xét phương trình trùng phương: ax^4 + bx2 + c = 0 (a ≠ 0). + Bước 1. Đặt t = x^2 (t ≥ 0) ta được phương trình bậc hai: at^2 + bt + c = 0 (a ≠ 0). + Bước 2. Giải phương trình bậc hai ẩn t từ đó ta tìm được các nghiệm của phương trình trùng phương đã cho. Dạng 2 . Phương trình chứa ẩn ở mẫu thức. Để giải phương trình chứa ẩn ở mẫu thức, ta có các bước giải như sau: + Bước 1. Tìm điều kiện xác định của ẩn. + Bước 2. Quy đồng mẫu thức hai vế rồi khử mẫu. + Bước 3. Giải phương trình bậc hai nhận được ở bước 2. + Bước 4. So sánh các nghiệm tìm được ở bước 3 với điều kiện xác định và kết luận. Dạng 3 . Phương trình đưa về dạng tích. Để giải phương trình đưa về dạng tích, ta có các bước giải như sau: + Bước 1. Chuyển vế và phân tích vế trái thành nhân tử, vế phải bằng 0. + Bước 2. Xét từng nhân tử bằng 0 để tìm nghiệm. Dạng 4 . Giải phương trình bằng phương pháp đặt ẩn phụ. + Bước 1. Đặt điều kiện xác định (nếu có). + Bước 2. Đặt ẩn phụ, đặt điều kiện của ẩn phụ (nếu có) và giải phương trình theo ẩn mới. + Bước 3. Tìm nghiệm ban đầu và so sánh với điều kiện xác định và kết luận. Dạng 5 . Phương trình chứa biểu thức trong dấu căn. Làm mất dấu căn bằng cách đặt ẩn phụ hoặc lũy thừa hai vế. Dạng 6 . Một số dạng khác. Ngoài các phương pháp trên, ta còn dùng các phương pháp hằng đẳng thức, thêm bớt hạng tử, hoặc đánh giá hai vế … để giải phương trình. III. BÀI TẬP VỂ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề hệ thức Vi-ét và ứng dụng
Tài liệu gồm 57 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hệ thức Vi-ét và ứng dụng, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 6. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Hệ thức Vi-ét. 2. Ứng dụng của hệ thức Vi-ét. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Không giải phương trình, tính giá trị của biểu thức đối xứng giữa các nghiệm. Dạng 2. Giải phương trình bằng cách nhẩm nghiệm. Dạng 3. Tìm hai số khi biết tổng và tích. Dạng 4. Phân tích tam thức bậc hai thành nhân tử. Dạng 5. Xét dấu các nghiệm của phương trình bậc hai. Dạng 6. Xác định điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn hệ thức cho trước. III. BÀI TẬP VỂ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TẬP TỰ LUYỆN Dạng 1: Nhẩm nghiệm của phương trình bậc hai. Dạng 2: Lập phương trình bậc hai có hai nghiệm cho trước. Dạng 3: Tính giá trị biểu thức theo hai nghiệm. Dạng 4: Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện cho trước.
Chuyên đề công thức nghiệm của phương trình bậc hai
Tài liệu gồm 28 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề công thức nghiệm của phương trình bậc hai, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 4. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Phương trình bậc hai một ẩn. 2. Công thức nghiệm của phương trình bậc hai. 3. Công thức nghiệm thu gọn của phương trình bậc hai. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Không dùng công thức nghiệm, giải phương trình bậc hai một ẩn cho trước. Dạng 2. Giải phương trình bậc hai bằng cách sử dụng công thức nghiệm, công thức nghiệm thu gọn. Dạng 3. Sử dụng công thức nghiệm, xác định số nghiệm của phương trình dạng bậc hai. Dạng 4. Giải và biện luận phương trình dạng bậc hai. Dạng 5. Một số bài toán liên quan đến tính có nghiệm của phương trình bậc hai; nghiệm chung của các phương trình dạng bậc hai; hai phương trình dạng bậc hai tương đương. B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TẬP TỰ LUYỆN
Chuyên đề hàm số $y ax2$ $left( a ne 0 right)$
Tài liệu gồm 33 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hàm số $y = a{x^2}$ $\left( {a \ne 0} \right)$, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 1. A. KIẾN THỨC TRỌNG TÂM 1. Tập xác định của hàm số. 2. Tính chất biến thiên của hàm số. 3. Đồ thị của hàm số. B. CÁC DẠNG BÀI TOÁN MINH HỌA Dạng toán 1. Xác định hàm số bậc hai. Dạng toán 2. Điểm thuộc đồ thị hàm số, vẽ đồ thị hàm số. Dạng toán 3. Sự đồng biến và nghịch biến của đồ thị hàm số. Dạng toán 4. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Dạng toán 5. Viết phương trình parabol y = ax^2 (a khác 0) (tìm hệ số a). Dạng toán 6. Tương giao giữa parabol với đường thẳng. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN