Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo tuyển sinh 10 môn Toán 2024 - 2025 phòng GDĐT Bình Tân - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 môn Toán năm học 2024 – 2025 phòng Giáo dục và Đào tạo quận Bình Tân, thành phố Hồ Chí Minh; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tham khảo tuyển sinh 10 môn Toán 2024 – 2025 phòng GD&ĐT Bình Tân – TP HCM : + Công ty đồ chơi Bingbon vừa cho ra đời một đồ chơi tàu điện điều khiển từ xa. Trong điều kiện phòng thí nghiệm, quãng đường s t (xen ti mét) đi được của đoàn tàu đồ chơi là một hàm số của thời gian t (giây), hàm số đó là s t 6t 9. Trong điều kiện thực tế người ta thấy rằng nếu đoàn tàu đồ chơi di chuyển quãng đường 12 cm thì mất 2 giây và cứ trong mỗi 10 giây thì nó đi được 52 cm. a) Trong điều kiện thí nghiệm, sau 5 (giây) đoàn tàu đồ chơi di chuyển được bao nhiêu mét? b) Mẹ bé An mua đồ chơi này về cho bé chơi, bé ngồi cách mẹ 2,5 mét. Hỏi cần bao nhiêu giây để đoàn tàu đồ chơi đi từ chỗ mẹ tới chỗ bé? + Bạn Vy đi làm thêm ở tiệm café “Take away NT” với hợp đồng lương tính theo ngày, nếu một ngày bán đủ 50 ly thì bạn sẽ nhận được lương cơ bản 150000 đồng, bên cạnh đó với mỗi ly bán vượt chỉ tiêu, bạn sẽ được thưởng thêm 40% so với tiền lời một ly café. Ngày đầu tiên đi làm bạn nhận được 222000 đồng. Tính số ly café bạn Vy đã bán được trong ngày đầu tiên đi làm, biết rằng tiền lời một ly café là 6000 đồng. + Trái bóng (hình cầu) Telstar xuất hiện lần đầu tiên ở World Cup 1970 ở Mexico do Adidas sản xuất có đường kính 22,3cm. Trái bóng được may từ 32 múi da đen và trắng. Các múi da màu đen hình ngũ giác đều, các múi da màu trắng hình lục giác đều. a) Biết công thức tính diện tích mặt cầu cho bởi công thức 2 S 4R π với R là bán kính hình cầu. Tính diện tích bề mặt của quả bóng Telstar. (làm tròn đến hàng đơn vị) b) Trên bề mặt trái bóng, mỗi múi da màu đen có diện tích 2 37cm. Mỗi múi da màu trắng có diện tích 2 55,9cm. Hãy tính trên trái bóng có bao nhiêu múi da màu đen và màu trắng?

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường PTNK TP HCM
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 trường PTNK TP HCM Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 trường PTNK TP HCM Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2023 – 2024 trường Phổ Thông Năng Khiếu, thành phố Hồ Chí Minh. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 trường PTNK – TP HCM: 1. Phần 1: Bài toán về việc tô màu các ô của bảng hình vuông 4 × 4 bằng màu đen hoặc trắng theo các điều kiện nhất định. 2. Phần 2: Giải bài toán liên quan đến số nguyên m, n thỏa mãn m2 − n = 1, với các yêu cầu cụ thể và chi tiết. 3. Phần 3: Bài toán về tam giác ABC, với nhiều yêu cầu phức tạp như chứng minh đường tròn ngoại tiếp tam giác ALH đi qua tâm nội tiếp I, chứng minh BAD = CAH, chứng minh KJ vuông góc EF, và chứng minh đồng quy của EF, IR và AS. Những bài toán này không chỉ đòi hỏi kiến thức chuyên sâu mà còn đề cao khả năng suy luận logic và khám phá của các thí sinh. Chúc các em học sinh sẽ giải quyết tốt các bài toán trong đề tuyển sinh này và đạt kết quả cao trong kỳ thi sắp tới.
Đề tuyển sinh môn Toán (không chuyên) năm 2023 2024 trường PTNK TP HCM
Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2023 2024 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (không chuyên) năm 2023 - 2024 trường PTNK TP HCM Đề tuyển sinh môn Toán (không chuyên) năm 2023 - 2024 trường PTNK TP HCM Xin chào quý thầy cô và các em học sinh! Sytu xin giới thiệu đến các bạn đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 môn Toán (không chuyên) năm học 2023 - 2024 của trường Phổ Thông Năng Khiếu, thành phố Hồ Chí Minh. Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 - 2024 trường PTNK - TP HCM bao gồm các phần sau: Trong một chương trình làm từ thiện, các học sinh lớp 10 trường PTNK đã tổ chức phát tập cho các em học sinh của một trường tiểu học vùng sâu. Chương trình được chia làm ba đợt: lần 1 phát 120 quyển tập, lần 2 phát 160 quyển tập và lần 3 phát 315 quyển tập. Lần 1 có 5 em học sinh vắng mặt, lần 2 có 3 em học sinh vắng mặt, và lần 3 các em học sinh đều có mặt. Các em nhận được số tập ở lần 3 bằng tổng số tập nhận được ở hai lần đầu. Hãy tính số học sinh của trường tiểu học đó. Đề thi cũng có một bài toán về hình học: Tam giác ABC nhọn nội tiếp đường tròn (O; R). Hai tiếp tuyến của (O) tại B, C cắt nhau tại M. Đoạn MO cắt BC tại H và MA cắt (O) tại D (D khác A). Vẽ Ax là tiếp tuyến tại A của (O). a) Chứng minh rằng MB2 = MD.MA và tứ giác ADHO nội tiếp. b) Vẽ đường thẳng qua M song song Ax cắt AB, AC lần lượt tại P, Q. Chứng minh tam giác MBP cân và M là trung điểm của PQ. c) Chứng minh rằng AB.AP = AC.AQ và PAM = CAH. Hy vọng các em sẽ học tập và ôn tập thật kỹ trước khi bước vào kỳ thi quan trọng. Chúc các em thành công!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Thái Bình
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Thái Bình Bản PDF - Nội dung bài viết Đề Tuyển Sinh Môn Toán (Chuyên) Năm 2023 - 2024 Sở GDĐT Thái Bình Đề Tuyển Sinh Môn Toán (Chuyên) Năm 2023 - 2024 Sở GDĐT Thái Bình Xin chào quý thầy cô và các em học sinh! Viết đến đây, chúng ta sẽ cùng tìm hiểu về đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (dành cho thí sinh thi chuyên Toán và Tin học) năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Thái Bình. Trong đề tuyển sinh môn Toán (chuyên) năm 2023 - 2024 của sở GD&ĐT Thái Bình, chúng ta sẽ gặp phải các bài toán thú vị như: Cho đa thức bậc ba \( P(x) \) thỏa mãn khi chia \( P(x) \) cho \( x - 1 \), \( x - 2 \), \( x - 3 \) đều được số dư là 6 và \( P(-1) = -18 \). Hãy tìm đa thức \( P(x) \). Trong tam giác vuông \( \triangle ABC \) tại \( A \) với \( AB = c \) và \( AC = b \), hãy tìm vị trí của đường thẳng \( d \) để diện tích tứ giác \( BDEC \) đạt giá trị lớn nhất, theo b, c. Chứng minh rằng nếu \( p \) là số nguyên tố lớn hơn 3 thì \( (7 - p)(7 + p) \) chia hết cho 24. Hy vọng rằng những kiến thức và kỹ năng mà các em đã học sẽ giúp các em tự tin và thành công khi giải các bài toán trong đề thi tuyển sinh năm nay. Chúc quý thầy cô và các em học sinh có một kỳ thi suôn sẻ và đạt kết quả cao!
Đề vào môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Phú Thọ
Nội dung Đề vào môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Phú Thọ Bản PDF - Nội dung bài viết Đề vào môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Phú Thọ Đề vào môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Phú Thọ Sytu xin trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh đề chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Toán và chuyên Tin học) năm học 2023 - 2024 tại trường THPT chuyên Hùng Vương, tỉnh Phú Thọ. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề vào lớp 10 môn Toán (chuyên) năm 2023 - 2024 trường chuyên Hùng Vương - Phú Thọ: Bạn An viết lên bảng 11 số nguyên dương (không nhất thiết phân biệt) có tổng bằng 30. Chứng minh rằng bạn An có thể xóa đi một số số sao cho các số còn lại trên bảng có tổng bằng 10. Trên đường tròn tâm O đường kính AB, R=2 lấy điểm N sao cho AN=R và M là một điểm thay đổi trên cung nhỏ BN (M khác B và N). Gọi I là giao điểm của AM và BN, H là hình chiếu của I trên AB, IH cắt AN tại C, K là điểm đối xứng với N qua AB. Chứng minh CM CB CI CH và ba điểm KHM thẳng hàng. Gọi P là giao điểm thứ hai của NH và (O). Chứng minh tâm đường tròn ngoại tiếp tam giác HPK thuộc đường thẳng cố định khi M thay đổi. Xác định vị trí của điểm M để tổng MB MN đạt giá trị lớn nhất. Viết lên bảng 2023 số 11 2 3 2022 2023. Mỗi bước ta xoá đi 2 số x y bất kì trên bảng rồi viết lên bảng số 1 xy x y (các số còn lại trên bảng giữ nguyên). Thực hiện liên tục thao tác trên cho đến khi trên bảng chỉ còn lại đúng một số. Hỏi số đó bằng bao nhiêu? File WORD (dành cho quý thầy, cô):