Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển chọn 200 bài toán VD VDC từ các đề thi thử tốt nghiệp THPT môn Toán

Nội dung Tuyển chọn 200 bài toán VD VDC từ các đề thi thử tốt nghiệp THPT môn Toán Bản PDF - Nội dung bài viết Tuyển chọn 200 bài toán VD VDC từ các đề thi thử tốt nghiệp THPT môn Toán Tuyển chọn 200 bài toán VD VDC từ các đề thi thử tốt nghiệp THPT môn Toán Tài liệu này được biên soạn bởi tác giả Trương Công Đạt, với 174 trang, tập hợp 200 bài toán mức độ vận dụng – vận dụng cao (VD – VDC) từ các đề thi thử tốt nghiệp THPT môn Toán toàn quốc. Mỗi bài toán đều có đáp án và lời giải chi tiết, giúp học sinh hiểu rõ cách giải và áp dụng kiến thức. Các bài toán trong tài liệu được trình bày theo nhiều cách giải khác nhau, bao gồm phương pháp tự luận, phương pháp giải nhanh trắc nghiệm, và phương pháp sử dụng máy tính cầm tay Casio / Vinacal, giúp học sinh nắm vững phương pháp giải bài tập. Ví dụ về bài toán trong tài liệu: + Đưa ra hàm số f(x) là hàm đa thức bậc 3 và đồ thị tương ứng. Giả sử hàm g(x) = f(2x + 3) + m. Tìm giá trị của m sao cho giá trị nhỏ nhất của g(x) trên đoạn [0;1] là 2022. + Cho hai điểm I (2;3;3) và J (4;−1;1) trong không gian. Xét khối trụ (T) có đường tròn đáy nằm trên mặt cầu IJ và có hai tâm trên đường thẳng IJ. Khi thể tích của khối trụ (T) đạt lớn nhất, tổng các hệ số của phương trình mặt phẳng chứa đường tròn đáy là bao nhiêu? + Phương trình z2 − 2z − m + 2 = 0 trên tập hợp số phức. Tìm tập hợp các giá trị m để phương trình có hai nghiệm phân biệt, biểu diễn hình học bởi hai điểm A và B sao cho diện tích tam giác ABC bằng 2√2 với C(−1;1). Tổng của các giá trị m thỏa mãn là bao nhiêu?

Nguồn: sytu.vn

Đọc Sách

Đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2022 môn Toán
Tối thứ Năm ngày 31 tháng 03 năm 2022, Bộ Giáo dục và Đào tạo chính thức công bố đề thi tham khảo kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2021 – 2022 trên trang web moet.gov.vn (cổng thông tin điện tử Bộ Giáo dục và Đào tạo). Đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2022 môn Toán vẫn giữ nguyên hình thức đề thi như những năm gần đây, đề gồm 50 câu hỏi và bài toán dạng trắc nghiệm 4 lựa chọn, thời gian làm bài 90 phút; sẽ cố gắng cập nhật bảng đáp án và lời giải chi tiết đề thi trong thời gian sớm nhất có thể. Trích dẫn đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2022 môn Toán : + Trong không gian Oxyz, cho mặt cầu (S): (x – 4)² + (y + 3) + (z + 6) = 50 và đường thẳng d. Có bao nhiêu điểm M thuộc trục hoành, với hoành độ là số nguyên, mà từ M kẻ được đến (S) hai tiếp tuyến cùng vuông góc với d? + Cho hàm số y = f(x) có đạo hàm là f'(x) = x2 + 10x với mọi x thuộc R. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = f(x4 – 8×2 + m) có đúng 9 điểm cực trị? + Cho hàm số f(x) = 3×4 + ax3 + bx2 + cx + d (a, b, c, d thuộc R) có ba điểm cực trị là -2, -1 và 1. Gọi y = g(x) là hàm số bậc hai có đồ thị đi qua ba điểm cực trị của đồ thị hàm số y = f(x). Diện tích hình phẳng giới hạn bởi hai đường y = f(x) và y = g(x) bằng?
Đề thi thử TN THPT 2022 môn Toán lần 1 cụm CM số 3 sở GDKHCN Bạc Liêu
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán lần 1 cụm chuyên môn số 3 sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu; đề thi có đáp án mã đề 132 – 209 – 357 – 485. Trích dẫn đề thi thử TN THPT 2022 môn Toán lần 1 cụm CM số 3 sở GDKHCN Bạc Liêu : + Trên bàn có một cốc nước hình trụ chứa đầy nước, có chiều cao bằng 3 lần đường kính của đáy; một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng đường kính của đương tròn đáy cốc nước. Người ta từ từ thả vào cốc nước viên bi và khối nón sao cho đỉnh khối nón nằm trên mặt cầu (như hình vẽ) thì thấy nước trong cốc tràn ra ngoài. Tính tỉ số thể tích của lượng nước còn lại trong cốc và lượng nước ban đầu. + Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu 22 2 1 1 2 9 Sx y z và điểm M(1;3;-1), biết rằng các tiếp điểm của các tiếp tuyến kẻ từ M tới mặt cầu đã cho luôn thuộc một đường tròn (C) có tâm J abc. Giá trị T abc 2 bằng? + Cho hình chóp S ABCD có đáy ABCD là hình vuông, AB = 1, cạnh bên SA = 1 và vuông góc với mặt phẳng đáy ABCD. Kí hiệu M là điểm di động trên đoạn CD và N là điểm di động trên đoạn CB sao cho góc MAN bằng 0 45. Thể tích nhỏ nhất của khối chớp S AMN là?
Đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GDĐT Hà Tĩnh
Chiều thứ Ba ngày 29 tháng 03 năm 2022, sở Giáo dục và Đào tạo tỉnh Hà Tĩnh tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2021 – 2022. Đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GD&ĐT Hà Tĩnh mã đề 007 gồm 04 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giao đề). Trích dẫn đề thi thử tốt nghiệp THPT năm 2022 môn Toán sở GD&ĐT Hà Tĩnh : + Cho hàm số 4 2 y ax bx c có đồ thị C đi qua điểm A 1 0 tiếp tuyến d của C tại A cắt C tại hai điểm khác A có hoành độ bằng 0 và 2. Hình phẳng giới hạn bởi d C và hai đường thẳng x x 0 2 có diện tích bằng 28 5 S (hình vẽ). Tính diện tích hình phẳng giới hạn bởi đồ thị C trục hoành và hai đường thẳng x x 1 0. + Trong không gian Oxyz cho hai điểm A B 1 3 10 4 6 5 và điểm M thay đổi trên mặt phẳng Oxy sao cho đường thẳng 𝑀𝐴 𝑀𝐵 cùng tạo với mặt phẳng Oxy các góc bằng nhau. Tìm giá trị nhỏ nhất của AM. + Gieo một con súc sắc cân đối và đồng chất 2 lần. Xác suất của biến cố A sao cho tổng số chấm trong 2 lần gieo bằng 8 là?
Đề thi thử THPT Quốc gia 2022 môn Toán lần 2 trường Lương Thế Vinh - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử THPT Quốc gia năm học 2021 – 2022 môn Toán lần 2 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội. Trích dẫn đề thi thử THPT Quốc gia 2022 môn Toán lần 2 trường Lương Thế Vinh – Hà Nội : + Cho mặt cầu (S) có phương trình (x – 1)2 + (y – 2)2 + (z – 2)2 = 25 và mặt phẳng (P): x + 2y + 2z + 6 = 0. Một hình nón tròn xoay có đáy nằm trên (P), có chiều cao h = 15, có bán kính đáy bằng 5. Hình cầu và hình nón nằm về một phía đối với mặt phẳng (P). Người ta cắt hai hình đó bởi mặt phẳng (Q) có phương trình x + 2y + 2z + d = 0 (0 < d < 21) thu được hai thiết diện có tổng diện tích là S. Biết rằng S đạt giá trị lớn nhất khi d = a/b với a, b thuộc Z+ (phân số tối giản). Tính giá trị T = a + b. + Cho hàm số bậc ba y = f(x) có đồ thị là đường cong ở hình bên dưới. Gọi x1, x2 lần lượt là hai điểm cực trị thỏa mãn x2 = x1 + 2 và f(x1) – 4f(x2) = 0. Đường thẳng song song với trục Ox và qua điểm cực tiểu cắt đồ thị hàm số tại điểm thứ hai có hoành độ x0 và x1 = x0 + 1. Tính tỉ số S1/S2 (S1 và S2 lần lượt là diện tích hai hình phẳng được gạch ở hình bên dưới). + Cho hình chóp S.ABC có A’, B’ lần lượt là trung điểm của SA, SB. Mặt phẳng (CA’B’) chia khối chóp S.ABC thành hai khối đa diện có thể tích lần lượt là V1, V2 (V1 > V2). Tỷ số V1/V2 gần với số nào nhất?