Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tuyển sinh lớp 10 môn Toán năm 2019 trường THPT Uông Bí - Quảng Ninh

Đề thi thử tuyển sinh lớp 10 môn Toán năm 2019 trường THPT Uông Bí – Quảng Ninh gồm 1 trang với 5 bài toán dạng tự luận, học sinh có 90 phút để làm bài, kỳ thi nhằm giúp học sinh lớp 9 nắm được dạng đề Toán và thử sức trước khi bước vào kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020. Trích dẫn đề thi thử tuyển sinh lớp 10 môn Toán năm 2019 trường THPT Uông Bí – Quảng Ninh : + Cho phương trình x^2 – m(m – 1)x + 5 = 0 (với m là tham số). a. Giải phương trình khi m = 3. b. Tìm m để phương trình có hai nghiệm là hai số nguyên. [ads] + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. Trên vịnh Hạ Long, vào lúc 6 giờ sáng, một chiếc tàu cá xuất phát từ đảo Ti Tốp, đi thẳng về hướng Nam với vận tốc không đổi. Nửa tiếng sau, một chiếc tàu du lịch cũng xuất phát từ đảo Ti Tốp, đi thẳng về hướng Đông với vận tốc bé hơn vận tốc tàu cá là 2 km/h. Đến 7 giờ khoảng cách giữa hai tàu là 13 km. Tính vận tốc mỗi tàu. + Cho tam giác ABC có ba góc nhọn, AB < AC. Hai đường cao BE, CF của tam giác ABC cắt nhau tại H. Hai đường thẳng EF và BC cắt nhau tại G. a. Chứng minh tứ giác AEHF nội tiếp. b. Chứng minh GB.GC = GE.GF. c. Đường tròn ngoại tiếp tam giác ABC cắt đường thẳng GA tại I khác A. Chứng minh HI vuông góc AG .

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Cần Thơ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Cần Thơ; đề thi hình thức 40% trắc nghiệm (20 câu) kết hợp 60% tự luận (04 câu), thời gian làm bài 120 phút, không kể thời gian phát đề; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Cần Thơ : + Bạn Phương đặt một bức tranh hình chữ nhật có chiều rộng 0,6m và chiều dài 0,8m lên một khung hình sao cho phần còn lại của khung hình quanh bức tranh có độ rộng bằng nhau và bằng x (m) (minh họa như hình bên dưới). Biết chu vi của khung hình là 3,6m. + Một phòng giáo dục và đào tạo phát động phong trào “Học sinh quyên góp sách giáo khoa lớp 9” nhằm giúp học sinh lớp 9 có hoàn cảnh khó khăn. Hưởng ứng phong trào trên, tổng số học sinh tham gia của Trường Trung học cơ sở A và Trường Trung học cơ sở B là 322. Mỗi học sinh của Trường Trung học cơ sở A quyên góp 6 quyển sách, mỗi học sinh của Trường Trung học cơ sở B quyên góp 5 quyển sách. Tổng số sách quyên góp của Trường Trung học cơ sở A nhiều hơn tổng số sách quyên góp của Trường Trung học cơ sở B là 172 quyển. Hỏi mỗi trường đã quyên góp được bao nhiêu quyển sách giáo khoa? + Cho tam giác ABC (AB AC) có ba góc nhọn, nội tiếp đường tròn tâm O. Tiếp tuyến tại A của đường tròn O cắt đường thẳng BC tại K. Từ O kẻ OD vuông góc với BC tại D, tia OD cắt đường tròn O tại E. a) Chứng minh tứ giác KDOA nội tiếp. b) Đường thẳng AE cắt BC tại N. Chứng minh tam giác KNA cân và 2 KN KB KC. c) Kẻ tiếp tuyến KM của đường tròn O (M là tiếp điểm). Chứng minh tia MN và tia ED cắt nhau tại một điểm thuộc đường tròn O.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hưng Yên; đề thi dành cho thí sinh dự thi vào các lớp chuyên Toán và chuyên Tin học. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hưng Yên : + Cho parabol (P): y = x2 và đường thẳng (d): y = (m + 2)x – m – 8 (với m là tham số). Tìm các giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt nằm bên phải trục tung, có hoành độ x1, x2 thỏa mãn x13 − x2 = 0. + Cho tam giác ABC đều, nội tiếp đường tròn (O;R), H là trung điểm của cạnh BC. M là điểm bất kì thuộc đoạn BH (M khác B). Lấy điểm N thuộc đoạn CA sao cho CN = BM. Gọi I là trung điểm của đoạn MN. a) Chứng minh bốn điểm O, M, H, I cùng thuộc một đường tròn. b) Chứng minh diện tích tam giác IAB không đổi. Xác định vị trí của điểm M để đoạn thẳng MN có độ dài nhỏ nhất. + Có một bình thủy tinh hình trụ cao 30cm chứa nước, diện tích đáy bình bằng 1/6 diện tích xung quanh, mặt nước cách đáy bình là 18cm (hình vẽ bên). Cần đổ thêm bao nhiêu lít nước nữa để nước vừa đầy bình (Bỏ qua bề dày của bình, cho pi = 3,14 và kết quả làm tròn đến chữ số thập phân thứ nhất)?
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Thuận; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Ninh Thuận : + Cho Parabol (P): y = -x2 và đường thẳng (d): y = x – 2. a) Vẽ (P) và (d) trên cùng một hệ trục tọa độ. b) Tìm tọa độ giao điểm của (P) và (d) bằng phép toán. + Gia đình An dự định đi du lịch tại Nha Trang và Huế trong 7 ngày. Biết rằng chi phí trung bình mỗi ngày tại Nha Trang là 2 triệu đồng, còn tại Huế là 3 triệu đồng. Tìm số ngày nghỉ dự định của gia đình An tại mỗi địa điểm, biết số tiền mà họ phải chi cho toàn bộ chuyến đi là 18 triệu đồng. + Cho đường tròn (O) tâm O bán kính R và điểm A nằm ngoài đường tròn. Các tiếp tuyến với đường tròn kẻ từ A tiếp xúc với đường tròn tại B, C. Gọi M là điểm thuộc cung lớn BC. Từ M kẻ MH vuông góc BC, MK vuông góc AC, MI vuông góc AB. a) Chứng minh tứ giác MIBH nội tiếp. b) Giả sử AB = 2R. Tính diện tích tứ giác ABOC. c) Chứng minh MI.MK = MH2.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hải Dương : + Tìm tất cả các số nguyên tố p lẻ sao cho 2p4 – p2 + 16 là số chính phương. + Tìm nghiệm nguyên của phương trình 6×2 + 7xy + 2y2 + x + y – 2 = 0. + Cho tam giác đều ABC nội tiếp đường tròn (O), điểm E thuộc cung nhỏ AB của đường tròn (O) (E khác A, E khác B). Đường thẳng AE cắt các tiếp tuyến tại B, C của đường tròn (O) lần lượt tại M, N. a) Chứng minh rằng MB.NC = AB2. b) Gọi F là giao điểm của MC và BN, H là trung điểm BC. Chứng minh rằng ba điểm E, F, H thẳng hàng.