Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh năng khiếu Toán 8 năm 2022 - 2023 phòng GDĐT Yên Lập - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh năng khiếu cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Lập, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm khách quan + 60% tự luận, thời gian làm bài 120 phút, không kể thời gian giao đề. Trích dẫn Đề học sinh năng khiếu Toán 8 năm 2022 – 2023 phòng GD&ĐT Yên Lập – Phú Thọ : + Cho tam giác ABC vuông tại A, đường cao AH. Qua B vẽ đường thẳng vuông góc với BC cắt đường thẳng AC tại D. Tia phân giác của góc C cắt AB tại N và cắt BD tại M. Hệ thức nào đúng? + Một giải đấu bóng đá theo hình thức thi đấu vòng tròn một lượt. Mỗi đội thắng được cộng 3 điểm, mỗi đội hòa được cộng 1 điểm, đội thua không được điểm. Kết thúc trậ đấu, ban tổ chức nhận thấy số trận thắng gấp ba lần số trận hòa, tổng số điểm là 330 điểm. Hỏi có bao nhiêu đội tham gia? + Cho hình vuông ABCD. Trên tia đối của tia CD lấy điểm E bất kì sao cho CE < CD. Kẻ DM vuông góc với BE (M thuộc BE), DM cắt BC tại H, EH cắt BD tại I, AC cắt BD tại O. a) Chứng minh rằng EI vuông góc với BD. b) Chứng minh rằng MI là tia phân giác của góc BMD. c) Tìm vị trí điểm E sao cho tam giác AMD có diện tích lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Thiệu Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi khảo sát chất lượng học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 02 năm 2023. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Thiệu Hóa – Thanh Hóa : + Cho x, y, z là các số thực dương thỏa mãn: x2 + y2 + z2 + 1/x2 + 1/y2 + 1/z2 = 6. Tính giá trị của biểu thức P = x2021 + y2022 + z2023. + Cho a, b, c là các số nguyên. Chứng minh rằng: a5 + b5 + c5 – (a + b + c) chia hết cho 30. + Cho tứ giác ABCD có B = D = 90° và AB > AD, lấy điểm M trên cạnh AB sao cho AM = AD. Đường thẳng DM cắt BC tại N. Gọi H là hình chiếu của D trên AC, K là hình chiếu của C trên AN. Chứng minh rằng: 1. Chứng minh rằng: AM2 = AH.AC. 2. Chứng minh rằng AHM = AMC và tam giác CDN là tam giác cân. 3. Chứng minh rằng : MHN = MCK.
Đề thi HSG Toán 8 năm 2022 - 2023 trường THCS Cao Xuân Huy - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp trường môn Toán 8 năm học 2022 – 2023 trường THCS Cao Xuân Huy, tỉnh Nghệ An. Trích dẫn Đề thi HSG Toán 8 năm 2022 – 2023 trường THCS Cao Xuân Huy – Nghệ An : + Cho hình vuông ABCD, trên tia đối của tia BA lấy M, trên tia đối của tia CB lấy N sao cho AM = CN a) Chứng minh MDN vuông cân b) Gọi O là giao điểm của 2 đường chéo AC và BD. Gọi K là trung điểm MN. Chứng minh O, C, K thẳng hàng. + Cho tam giác ABC có ba góc nhọn (AB < AC), đường cao AH. Kẻ HD vuông góc với AB (D thuộc AB). Gọi I là trung điểm của AD, trên tia đối của tia BC lấy điểm K sao cho BK = BH. Chứng minh KD vuông góc với HI. + Cho các số nguyên a, b, c, d thỏa mãn: a + b = c + d. Chứng minh a 2 + b 2 + c 2 + d 2 là tổng của ba số chính phương.
Đề thi Olympic Toán 8 năm 2021 - 2022 trường THCS Tây Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2021 – 2022 trường THCS Tây Sơn, quận Hai Bà Trưng, thành phố Hà Nội. Trích dẫn đề thi Olympic Toán 8 năm 2021 – 2022 trường THCS Tây Sơn – Hà Nội : + Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. a) Chứng minh: AC2 = BC.HC. b) Lấy điểm I thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CI tại K. Chứng minh rằng CH.CB = CI.CK. c) Tia BK cắt tia HA tại D. Chứng minh rằng BHK = BDC. d) Trên tia đối của tia KC lấy điểm M sao cho BM = BA. Chứng minh BMD = 90°. + Cho hai biểu thức a) Tính P = AB. b) Tìm các giá trị nguyên của x để P là số tự nhiên. c) Tìm tất cả các giá trị của m để phương trình P = m có nghiệm dương duy nhất. + Tìm giá trị lớn nhất của biểu thức A = 8 – x4 + 2×2.
Đề thi học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Hương Trà - TT Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp thị xã môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo Hương Trà, tỉnh Thừa Thiên Huế. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Hương Trà – TT Huế : + Tìm giá trị của m để cho phương trình 6x – 5m = 3 + 3mx có nghiệm số gấp ba nghiệm số của phương trình. + Cho P = n4 + 4. Tìm tất cả các số tự nhiên n để P là số nguyên tố. + Cho tam giác ABC nhọn. Các đường cao AA’, BB’, CC’; H là trực tâm. a) Tính tổng b) Gọi AI là phân giác của tam giác ABC; IM, IN thứ tự là phân giác của AIC và AIB. Chứng minh rằng: AN.BI.CM = BN.IC.AM. c) Chứng minh.