Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

242 bài tập trắc nghiệm chuyên đề toán ứng dụng thực tế - Phạm Minh Tuấn

Tài liệu gồm 92 trang tuyển chọn 242 bài toán ứng dụng thực tiễn gồm đầy đủ các dạng bài khác nhau, trong đó: + 137 bài tập ứng dụng thực tiễn có đáp án + 105 bài tập ứng dụng thực tiễn tự luyện Trích dẫn tài liệu : + Bạn Lộc trong thời gian 5 năm Đại Học đã vay ngân hàng mỗi năm 10 triệu đồng với lãi suất 2,9% một năm (thủ tục vay một năm 1 lần vào thời điểm đầu năm học). Khi ra trường Lộc thất nghiệp chưa trả được tiền cho ngân hàng và phải chịu lãi suất 8% một năm. Sau 1 năm thất nghiệp, bạn ấy đã tìm được công việc làm và bắt đầu trả nợ dần. Tính tổng số tiền ban Lộc nợ ngân hàng trong 5 năm học đại học và 1 năm thất nghiệp? [ads] + Giả sử đoạn đường AC thẳng có độ dài 100m. Bạn An đứng ở vị trí D và bạn Bình đứng ở vị trí B sao cho tạo thành tứ diện ABCD như hình vẽ, biết các góc DAC = 25 độ, góc DCA = 37 độ, góc BAC = 35 độ và góc BCA = 32 độ. Khi đó tổng khoảng cách từ chỗ của bạn An và bạn Bình đứng đến đoạn đường AC gần nhất với giá trị nào sau đây? + Một mảnh sân hình chữ nhật có chiều rộng và chiều dài tương ứng là 7,6m và 11,2m được lát kín bởi các viên gạch hình vuông có cạnh 20cm.( Cho rằng diện tích phần tiếp giáp nhau giữa các viên gạch là không đáng kể). Người ta đánh số các viên gạch được lát từ 1 cho đến hết. Giả sử trên viên gạch thứ nhất người ta đặt lên đó 1 hạt đậu , trên viên gạch thứ hai người ta đặt lên đó 7 hạt đậu, trên viên gạch thứ ba người ta đặt lên đó 49 hạt đậu, trên viên gạch thứ tư người ta đặt lên đó 343 hạt đậu … và cứ đặt các hạt đậu theo cách đó cho đến viên gạch cuối cùng ở trên sân này. Gọi S là tổng số hạt đậu đã đặt lên các viên gạch của sân đó. Hỏi nếu viết trong hệ thập phân, số 6S + 1 có bao nhiêu chữ số?

Nguồn: toanmath.com

Đọc Sách

113 bài tập trắc nghiệm phương trình mặt phẳng - Huỳnh Công Dũng
Tài liệu gồm 15 trang với 113 bài tập trắc nghiệm thuộc chuyên đề phương trình mặt phẳng có đáp án.
Các dạng bài tập viết phương trình đường thẳng trong không gian - Nguyễn Thị Thu
Tài liệu gồm 19 trang hướng dẫn giải các dạng toán viết phương trình đường thẳng trong không gian. Trong chương trình Hình học 12, bài toán viết phương trình đường thẳng trong không gian là bài toán hay và không quá khó. Để làm tốt bài toán này đòi hỏi học sinh phải nắm vững kiến thức hình học không gian, mối quan hệ giữa đường thẳng, mặt phẳng và mặt cầu. Là dạng toán chiếm tỷ lệ nhiều trong các đề thi tốt nghiệp THPT và thi vào Cao đẳng, Đại học nên yêu cầu học sinh phải làm tốt được dạng toán này là hết sức cần thiết. Trong quá trình giảng dạy, tôi nhận thấy các em còn lúng túng nhiều trong quá trình giải các bài toán về viết phương trình đường thẳng. Nhằm giúp các em giảm bớt khó khăn khi gặp dạng toán này tôi đã mạnh dạn đưa ra chuyên đề : “Phân loại các dạng bài tập viết về phương trình đường thẳng trong không gian”. Trong chuyên đề, tôi đã đưa ra phân loại bài tập viết phương trình đường thẳng từ dễ đến khó để học sinh tiếp cận một cách đơn giản, dễ nhớ và từng bước giúp học sinh hình thành tư duy tự học, tự giải quyết vấn đề. Ngoài ra, giúp cho các em làm tốt các bài thi tốt nghiệp cũng như thi vào các trường Cao đẳng và Đại học. Chuyên đề gồm 3 phần: + Phần I: Phương pháp chung để giải toán + Phần II: Một số dạng toán thường gặp + Phần III: Bài tập tự luận tự luyện + Phần IV: Bài tập trắc nghiệm tự luyện [ads] Các dạng toán viết phương trình đường thẳng trong không gian: + Dạng 1: Viết phương trình tham số và phương trình chính tắc của đường thẳng d biết d đi qua điểm M (x0; y0; z0) và có vectơ chỉ phương u = (a; b; c). + Dạng 2: Viết phương trình tham số của đường thẳng d biết d đi qua hai điểm A, B cho trước. + Dạng 3: Viết phương trình đường thẳng d đi qua điểm M và vuông góc với mặt phẳng (α). + Dạng 4: Viết phương trình đường thẳng d đi qua điểm M và song song với đường thẳng d’. + Dạng 5: Đường thẳng d đi qua điểm M và song song với 2 mặt phẳng cắt nhau (P) và (Q). + Dạng 6: Viết phương trình đường thẳng d đi qua điểm M, song song với mặt phẳng (P) và vuông góc với đường thẳng d’ (d’ không vuông góc với (P)). + Dạng 7 : Viết phương trình đường thẳng d đi qua điểm M và vuông góc với hai đường thẳng d1 và d2 (d1 và d2 là hai đường thẳng chéo nhau). + Dạng 8: Viết phương trình đường thẳng d đi qua điểm M đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 9: Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2. + Dạng 10: Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d1. + Dạng 11: Viết phương trình đường thẳng d nằm trong mp(P) đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 12: Viết phương trình đường thẳng d song song với d’ đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 13: Viết phương trình đường thẳng d song song và cách đều hai đường thẳng song song d1 và d2 đồng thời d nằm trong mặt phẳng chứa d1 và d2. + Dạng 14: Viết phương trình đường thẳng d là đường vuông góc chung của hai đường thẳng d1 và d2 chéo nhau. + Dạng 15 : Viết phương trình tham số của đường thẳng d là hình chiếu của d’ trên mặt phẳng (P).
81 bài tập trắc nghiệm phương pháp tọa độ trong không gian - Hà Hữu Hải
Tài liệu gồm 11 trang với các bài tập trắc nghiệm phương pháp tọa độ trong không gian có đáp án. Trích dẫn tài liệu : + Trong không gian với hệ trục Oxyz, cho 3 điểm A(1; 0; 0), B(0; 2; 0), C(0; 0; 3). Viết phương trình mặt phẳng đi qua 3 điểm A, B, C. A. 6x – 3y + 2z – 6 = 0 B. 6x + 3y + 2z + 6 = 0 C. x + 2y + 3z – 1 = 0 D. 6x + 3y + 2z – 6 = 0 [ads] Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm M(1; 1; 3), N(1; 1; 5), P(3; 0; 4). Phương trình nào sau đây là phương trình mặt phẳng đi qua điểm M và vuông góc với đường thẳng NP? A. x – y – z + 3 = 0 B. x – 2y – z − 0 = 0 C. 2x – y – z + 2 = 0 D. 2x – y + z – 4 = 0 + Phương trình mặt phẳng đi qua 3 điểm A(0; 0; 1), B(2; 1; -1), C(-1; -2; 0) là: A. 5x – 4y + 3z – 3 = 0 B. 5x – 4y + 3z – 9 = 0 C. 5x – y + 3z – 33 = 0 D. x – 4y + z – 6 = 0
Bài tập trắc nghiệm phương pháp tọa độ trong không gian - Đặng Ngọc Hiền
Tài liệu gồm 17 trang tuyển chọn các bài tập trắc nghiệm phương pháp tọa độ trong không gian. Tóm tắt lý thuyết và công thức cơ bản I. Vectơ pháp tuyến của mặt phẳng II. Phương trình mặt phẳng III. Khoảng cách từ một điểm đến một mặt phẳng IV. Vị trí tương đối của hai mặt phẳng VI. Góc giữa hai mặt phẳng Các dạng toán và bài tập trắc nghiệm Loại 1. Vectơ pháp tuyến của mặt phẳng Loại 2. Viết phương trình mặt phẳng (biết điểm và VTPT của mặt phẳng) Loại 3. Viết phương trình mặt phẳng (phương trình mặt phẳng theo đoạn chắn) [ads] Loại 4. Viết phương trình mặt phẳng (biết VTPT và một điều kiện) Loại 5. + Khoảng cách từ một điểm đến một mặt phẳng + Vị trí tương đối của hai mặt phẳng Loại 6. + Vị trí tương đối giữa mặt phẳng và mặt cầu. + Hình chiếu của một điểm lên mặt phẳng Loại 7. + Góc giữa hai mặt phẳng + Phương trình mặt phẳng (Biết hai điểm thuộc mặt phẳng và góc)