Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kỳ 1 Toán 11 năm 2023 - 2024 trường THPT Nguyễn Khuyến - An Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán 11 năm học 2023 – 2024 trường THPT Nguyễn Khuyến, tỉnh An Giang; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề cuối kỳ 1 Toán 11 năm 2023 – 2024 trường THPT Nguyễn Khuyến – An Giang : + Một bồn chứa nước hình trụ bằng bê tông cao 4 mét, đặt vuông góc với măt đất, chỉ chừa một nắp nhỏ bên ngoài để bơm nước vào bồn, trong bồn có sẵn một lượng nước. Để đo chiều cao mực nước trong bồn người ta có cách đo như sau: Lấy một cây sào tre có chiều cao 5 mét nhúng vào thùng nước sao cho có một đầu chạm đáy và một đầu chạm với mặt trên của bồn nước (như hình vẽ) sau khi rút sào tre thì đo được phần sào tre bị ước là 1,5mét. Hỏi mực nước trong bồn cao bao nhiêu mét. + Trong một lần Đoàn trường Nguyễn Khuyến tổ chức chơi bóng chuyền hơi, bạn Nam thả một quả bóng chuyền hơi từ tầng ba, độ cao 8m so với mặt đất và thấy rằng mỗi lần chạm đất thì quả bóng lại nảy lên một độ cao bằng ba phần tư độ cao lần rơi trước. Biết quả bóng chuyển động vuông góc với mặt đất. Khi đó tổng quảng đường quả bóng đã bay từ lúc thả bóng đến khi quả bóng không máy (nằm im trên mặt đất) nữa gần bằng số nào dưới đây nhất? + Một chiếc cầu bắt qua sông, mặt dưới gầm cầu có dạng hình cung AB biểu thị bởi hàm số 8 cos 2 3 12 x y với x 6 6 π π như hình minh họa sau. Biết qui định chiều cao tối đa của phương tiện giao thông hàng hóa qua lại dưới gầm cầu phải thấp hơn mặt nước gầm ít nhất 0,8 mét. Một sà lan chở khối hàng hóa có hình dạng là một khối hộp chữ nhật với độ cao 5,2 mét so với mặt nước sông muốn đi qua gầm cầu. Tính bề rộng tối đa của khối hàng hóa để sà lan qua được gầm cầu đúng qui định (lấy số π ≈ 3,14).

Nguồn: toanmath.com

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.