Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các chuyên đề Toán 8 (tập một) - Phạm Đình Quang

Tài liệu gồm 229 trang, được biên soạn bởi thầy giáo Phạm Đình Quang, tuyển tập các chuyên đề Toán 8 (tập một), giúp học sinh khối lớp 8 tham khảo khi học tập chương trình Toán 8 giai đoạn học kì 1. Mục lục : Phần I ĐẠI SỐ. Chương 1. PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC 1. Bài 1. Nhân đơn thức với đa thức 1. A TÓM TẮT LÝ THUYẾT 1. B BÀI TẬP 1. Bài 2. Nhân đa thức với đa thức 4. A TÓM TẮT LÝ THUYẾT 4. B BÀI TẬP 4. Bài 5. Những hằng đẳng thức đáng nhớ 10. A TÓM TẮT LÝ THUYẾT 10. B BÀI TẬP 13. Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung 23. A VÍ DỤ 23. B BÀI TẬP 24. Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức 26. A VÍ DỤ 26. B BÀI TẬP 26. Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử 28. A VÍ DỤ 28. B BÀI TẬP 29. Bài 9. Phân tích đa thức thành nhân tử bằng các phương pháp khác (tách hạng tử, thêm bớt, đặt ẩn phụ) 33. A VÍ DỤ 33. B BÀI TẬP 33. Bài 10. Chia đơn thức cho đơn thức 42. A LÝ THUYẾT 42. B BÀI TẬP 43. Bài 11. Chia đa thức cho đơn thức 43. A LÝ THUYẾT 43. B BÀI TẬP 44. Bài 12. Chia đa thức một biến đã sắp xếp 45. A LÝ THUYẾT 45. B BÀI TẬP 46. Chương 2. PHÂN THỨC ĐẠI SỐ 52. Bài 1. Bài 1 – 2 – 3 – 4. Phân thức đại số 52. A TÓM TẮT LÝ THUYẾT 52. B BÀI TẬP 52. Bài 2. Bài 5, 6, 7, 8. Phép cộng, trừ, nhân, chia các phân thức đại số 56. A TÓM TẮT LÝ THUYẾT 56. B BÀI TẬP 57. Bài 3. Biến đổi các biểu thức hữu tỉ – giá trị của phân thức đại số 65. A Lý thuyết 65. Phần II HÌNH HỌC. Chương 3. TỨ GIÁC 82. Bài 1. Tứ giác 82. A TÓM TẮT LÝ THUYẾT 82. B BÀI TẬP 83. Bài 2. Hình thang 87. A TÓM TẮT LÝ THUYẾT 87. B BÀI TẬP 88. Bài 3. Hình thang cân 90. A LÝ THUYẾT 90. B BÀI TẬP 91. Bài 4. Đường trung bình 94. A TÓM TẮT LÝ THUYẾT 94. B BÀI TẬP 95. Bài 6. Đối xứng trục 105. A TÓM TẮT LÝ THUYẾT 105. B BÀI TẬP 107. Bài 7. Hình bình hành 110. A TÓM TẮT LÝ THUYẾT 111. B BÀI TẬP 111. Bài 8. Đối xứng tâm 119. A TÓM TẮT LÝ THUYẾT 119. B BÀI TẬP 120. Bài 9. Hình chữ nhật – Đường thẳng song song với một đường thẳng cho trước 127. A TÓM TẮT LÝ THUYẾT 127. B BÀI TẬP 129. Bài 11. Hình thoi 141. A TÓM TẮT LÝ THUYẾT 142. B BÀI TẬP 142. Bài 12. Hình vuông 156. A TÓM TẮT LÝ THUYẾT 156. B BÀI TẬP 157. Chương 4. ĐA GIÁC, DIỆN TÍCH ĐA GIÁC 174. Bài 1. TÓM TẮT LÝ THUYẾT 174. Bài 2. BÀI TẬP 175. Chương 5. Đề thi tham khảo 181. Bài 1. Đề kiểm tra giữa học kì I – Năm học 2009 – 2010 181. Bài 2. Đề kiểm tra giữa học kì I – Năm học 2010 – 2011 183. Bài 3. Đề kiểm tra giữa học kì I – Năm học 2011 – 2012 185. Bài 4. Đề kiểm tra giữa học kì I – Năm học 2012 – 2013 187. Bài 5. Đề kiểm tra giữa học kì I – Năm học 2013 – 2014 189. Bài 6. Đề kiểm tra giữa học kì I – Năm học 2014 – 2015 191. Bài 7. Đề kiểm tra giữa học kì I – Năm học 2015-2016 193. Bài 8. Đề kiểm tra giữa học kì I – Năm học 2016-2017 195. Bài 9. Đề kiểm tra học kì 1 – Năm học 2009 – 2010 197. Bài 10. Đề kiểm tra học kì I năm học 2010 – 2011 199. Bài 11. Đề kiểm tra học kì I năm học 2011 – 2012 202. Bài 12. Đề kiểm tra học kì 1 – Năm học: 2012 – 2013 206. Bài 13. Đề kiểm tra học kì I năm học 2013 – 2014 209. Bài 14. Đề kiểm tra học kì I năm học 2014 – 2015 213. Bài 15. Đề kiểm tra học kì I năm học 2015 – 2016 – Quận 1 216. Bài 16. Đề kiểm tra học kì I năm học 2016 – 2017 – Quận 1 219.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề diện tích hình chữ nhật
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT 1. Khái niệm diện tích đa giác. Số đo phần mặt phẳng giới hạn bởi một đa giác được gọi là diện tích đa giác đó. Mỗi đa giác có một diện tích là một số dương xác định. Diện tích đa giác có các tính chất sau: + Hai tam giác bằng nhau thì có diện tích bằng nhau. + Nếu một đa giác được chia thành những đa giác không có điểm trong chung thì diện tích của nó bằng tổng diện tích của những đa giác đó. + Nếu chọn hình vuông có cạnh 1 cm, 1 dm, 1 m … làm đơn vị đo diện tích thì đơn vị diện tích của hình vuông đó tương ứng là 1 cm2, 1 dm2, 1 m2 … 2. Công thức tính diện tích một số hình cơ bản. + Diện tích hình chữ nhật bằng tích hai kích thước của nó. + Diện tích hình vuông bằng bình phương cạnh của nó. + Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông. + Diện tích tam giác thường bằng nửa tích một cạnh và chiều cao hạ xuống cạnh đó. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích đa giác. Phương pháp giải: Sử dụng ba khái niệm diện tích của đa giác. Dạng 2. Diện tích hình chữ nhật. Phương pháp giải: Sử dụng công thức tính diện tích hình chữ nhật. Dạng 3. Diện tích hình vuông. Phương pháp giải: Sử dụng công thức tính diện tích hình vuông. Dạng 4. Diện tích tam giác vuông. Phương pháp giải: Sử dụng công thức tính diện tích tam giác vuông và định lí Pytago. Dạng 5. Tổng hợp các dạng trên. B. PHIẾU BÀI TỰ LUYỆN Dạng 1: Diện tích hình chữ nhật. Dạng 2: Tính độ dài các cạnh của hình chữ nhật. Dạng 3: Diện tích hình vuông. Diện tích tam giác vuông. Dạng 4: Bài tập tổng hợp.
Chuyên đề đa giác, đa giác đều
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề đa giác, đa giác đều, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT 1. Đa giác: Đa giác A1A2…An là hình gồm n đoạn thẳng A1A2; A2A3;…AnA1 trong đó bất kì hai đoạn thẳng nào có một điểm chung cũng không cùng nằm trên một đường thẳng. 2. Đa giác lồi: Đa giác lồi là đa giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của đa giác. 3. Các khái niệm khác. + Một đa giác có n đỉnh được gọi n-giác. + Đường chéo của đa giác là các đoạn thẳng nối hai đỉnh không kề nhau của đa giác đó. + Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA + Dạng 1. Nhận biết đa giác. Phương pháp giải: Sử dụng định nghĩa đa giác trong phần Tóm tắt lý thuyết ở trên. + Dạng 2: Tính chất về góc của đa giác. Phương pháp giải: Tổng các góc trong của đa giác n cạnh (n > 2) là (n – 2).180°. + Dạng 3: Tính chất về đường chéo của đa giác. Phương pháp giải: Xét số đường chéo xuất phát từ một đỉnh. + Dạng 4: Đa giác đều. Phương pháp giải: Sử dụng định nghĩa đa giác đều, công thức tính góc của đa giác đều. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề hình vuông
Tài liệu gồm 17 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình vuông, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. KIẾN THỨC CẦN NHỚ II. CÁC DẠNG BÀI TẬP A. CÁC DẠNG BÀI TẬP MINH HỌA Dạng 1. Nhận dạng hình vuông. Phương pháp giải: Sử dụng một trong hai cách sau: + Cách 1: Chứng minh tứ giác là hình chữ nhật có thêm dấu hiệu hai cạnh kề bằng nhau hoặc hai đường chéo vuông góc hoặc một đường chéo là đường phân giác của một góc. + Cách 2: Chứng minh tứ giác là hình thoi có thêm dấu hiệu có một góc vuông hoặc hai đường chéo bằng nhau. Dạng 2. Sử dụng định nghĩa, tính chất của hình vuông để chứng minh các quan hệ bằng nhau, song song, vuông góc, thẳng hàng. Phương pháp giải: Sử dụng định nghĩa, tính chất và bổ đề về hình vuông. Dạng 3. Tìm điều kiện để một hình trở thành hình vuông. Phương pháp giải: + Sử dụng các dấu hiệu nhận biết hình vuông. + Nếu bài toán chỉ yêu cầu tìm vị trí của một điểm nào đó để một hình trở thành hình vuông ta làm như sau: giả sử hình đó là hình vuông rồi dựa vào các tính chất của hình vuông để chỉ ra vị trí cần tìm. B. PHIẾU BÀI TẬP RÈN LUYỆN
Chuyên đề hình thoi
Tài liệu gồm 32 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình thoi, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA CB – NC Dạng 1. Chứng minh tứ giác là hình thoi. Phương pháp: Sử dụng các dấu hiệu nhận biết. + Tứ giác có bốn cạnh bằng nhau là hình thoi. + Hình bình hành có hai cạnh kề bằng nhau là hình thoi. + Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi. + Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi. Dạng 2. Vận dụng tính chất của hình thoi để chứng minh các tính chất hình học. Phương pháp: Sử dụng tính chất và định nghĩa của hình thoi để giải toán. + Hình thoi là tứ giác có bốn cạnh bằng nhau. + Hình thoi có tất cả các tính chất của hình bình hành: Các cạnh đối song song và bằng nhau, các góc đối bằng nhau. Hai đường chéo cắt nhau tại trung điểm của mỗi đường. + Ngoài ra, trong hình thoi có: Hai đường chéo vuông góc với nhau. Hai đường chéo là các đường phân giác của các góc của hình thoi. Dạng 3. Tìm điều kiện để tứ giác là hình thoi. Phương pháp giải: Vận dụng định nghĩa, các tính chất và dấu hiệu nhận biết của hình thoi. Dạng 4. Tổng hợp. B. PHIẾU BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY Dạng 1: Nhận biết tứ giác là hình thoi. Dạng 2. Sử dụng tính chất hình thoi để tính toán, chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau, các đường thẳng vuông góc. Dạng 3. Tìm điều kiện để tứ giác là hình thoi. C. PHIẾU BÀI TỰ LUYỆN CB – NC Dạng 1: Chứng minh một tứ giác là hình thoi. Dạng 2: Vận dụng kiến thức hình thoi để chứng minh và giải toán.