Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lần 3 Toán 12 năm 2018 - 2019 trường Triệu Thái - Vĩnh Phúc

Vừa qua, trường THPT Triệu Thái (Lập Thạch, Vĩnh Phúc) đã tổ chức kỳ thi khảo sát chất lượng lần 3 môn Toán 12 năm học 2018 – 2019, kỳ thi nhằm tạo điều kiện để các em học sinh khối 12 của nhà trường được tiếp tục rèn luyện và củng cố các kiến thức Toán THPT, để các em có sự chuẩn bị tốt nhất cho kỳ thi THPT Quốc gia môn Toán năm 2019. Đề thi KSCL lần 3 Toán 12 năm 2018 – 2019 trường Triệu Thái – Vĩnh Phúc có mã đề 132 gồm 06 trang, đề được soạn theo dạng đề trắc nghiệm với 50 câu hỏi và bài tập, học sinh làm bài thi KSCL Toán 12 trong thời gian 90 phút. [ads] Trích dẫn đề thi KSCL lần 3 Toán 12 năm 2018 – 2019 trường Triệu Thái – Vĩnh Phúc : + Mảnh vườn nhà ông An có dạng hình elip với bốn đỉnh A1, A2, B1, B2 như hình vẽ bên. Ông dùng 2 đường Parabol có đỉnh là tâm đối xứng của elip cắt elip tại 4 điểm M, N, P, Q như hình vẽ sao cho tứ giác MNPQ là hình chữ nhật có MN = 4 để chia vườn. Phần tô đậm dùng để trồng hoa và phần còn lại để trồng rau. Biết chi phí trồng hoa là 600.000 đồng/m2 và trồng rau là 50.000 đồng/m2. Hỏi số tiền phải chi gần nhất với số tiền nào dưới đây, biết A1A2 = 8m, B1B2 = 4m. + Trong kỳ thi chọn học sinh giỏi tỉnh Vĩnh Phúc có 105 em dự thi, có 10 em tham gia buổi gặp mặt trước kỳ thi. Biết các em đó có số thứ tự trong danh sách lập thành một cấp số cộng. Các em ngồi ngẫu nhiên vào hai dãy bàn đối diện nhau, mỗi dãy có 5 ghế và mỗi ghế chỉ ngồi được 1 học sinh. Tính xác suất để tổng các số thứ tự của hai em ngồi đối diện nhau là bằng nhau. + Một vật chuyển động theo quy luật s = -1/3.t^3 + 6.t^2 với t ( giây) là khoảng thời gian tính từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 9 giây, kể từ khi vật bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử lần 3 THPT QG 2020 môn Toán trường THPT chuyên Nguyễn Trãi - Hải Dương
Nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán, thứ Bảy ngày 13 tháng 06 năm 2020, trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương tổ chức kỳ thi thử Trung học Phổ thông Quốc gia môn Toán năm học 2019 – 2020 lần thi thứ ba. Đề thi thử lần 3 THPT QG 2020 môn Toán trường THPT chuyên Nguyễn Trãi – Hải Dương mã đề 824 gồm 08 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút. Trích dẫn đề thi thử lần 3 THPT QG 2020 môn Toán trường THPT chuyên Nguyễn Trãi – Hải Dương : + COVID19 là một loại bệnh viêm đường hô hấp cấp do chủng mới của virus corona (nCoV) bắt nguồn từ Trung Quốc (đầu tháng 12/2019) gây ra với tốc độ truyền bệnh rất nhanh (tính đến ngày 2/6/2020 đã có 6.365.173 người nhiễm bệnh). Giả sử ban đầu có 1 người bị nhiễm bệnh và cứ sau 1 ngày sẽ lây sang a người khác (a thuộc N*). Tất cả những người nhiễm bệnh lại tiếp tục lây sang những người khác với tốc độ như trên (1 người lây a người). Tìm a biết sau 7 ngày có tổng cộng 16384 người mắc bệnh (giả sử rằng những người nhiễm bệnh không phát hiện bản thân bị bệnh, không phòng tránh cách li và trong thời gian ủ bệnh vẫn lây bệnh sang người khác được). [ads] + Gọi A là tập các số tự nhiên có 5 chữ số đôi một khác nhau được lập từ các số 1; 2; 3; 4; 5; 6; 7; 8; 9. Lấy ngẫu nhiên một số thuộc tập A. Tính xác suất để số lấy được luôn có mặt hai chữ số 1; 2 và chúng không đứng cạnh nhau. + Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = f(cosx) – 2cosx – m cắt trục hoành tại điểm có hoành độ thuộc khoảng (-pi/2;pi/2).
Đề thi thử tốt nghiệp THPT năm 2020 môn Toán liên trường THPT - Nghệ An
Chiều thứ Bảy ngày 13 tháng 06 năm 2020, cụm các trường THPT thuộc sở Giáo dục và Đào tạo tỉnh Nghệ An đã tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông năm học 2019 – 2020 môn Toán. Đề thi thử tốt nghiệp THPT năm 2020 môn Toán liên trường THPT – Nghệ An mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, cấu trúc đề bám sát đề minh họa tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề thi có đáp án và lời giải chi tiết mã đề 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124. Trích dẫn đề thi thử tốt nghiệp THPT năm 2020 môn Toán liên trường THPT – Nghệ An : + Ông A có số tiền là 100 000 000 đồng gửi tiết kiệm theo thể thức lãi kép, có hai loại kì hạn: loại kì hạn 12 tháng với lãi suất là 12% / năm và loại kì hạn 1 tháng với lãi suất 1% / tháng. Ông A muốn gửi 10 năm. Theo anh chị, kết luận nào sau đây đúng (làm tròn đến hàng nghìn). A. Gửi theo kì hạn 1 tháng có kết quả nhiều hơn kì hạn 1 năm là 16 186 000 đồng sau 10 năm. B. Cả hai loại kì hạn đều có cùng số tiền như nhau sau 10 năm. C. Gửi theo kì hạn 1 tháng có kết quả nhiều hơn kì hạn 1 năm là 19 454 000 đồng sau 10 năm. D. Gửi theo kì hạn 1 tháng có kết quả nhiều hơn kì hạn 1 năm là 15 584 000 đồng sau 10 năm. [ads] + Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau lập thành từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Chọn ngẫu nhiên 1 số từ tập S. Tính xác suất để số được chọn có đúng 2 chữ số chẵn. + Cho hình chóp S.ABC, đáy là tam giác ABC có AB = BC√5, AC = 2BC√2, hình chiếu của S lên mặt phẳng (ABC) là trung điểm O của cạnh AC. Khoảng cách từ A đến mặt phẳng (SBC) bằng 2. Mặt phẳng (SBC) hợp với mặt phẳng (ABC) một góc x thay đổi. Biết rằng giá trị nhỏ nhất của thể tích khối chóp S.ABC bằng √a/b, trong đó a và b thuộc N*, a là số nguyên tố. Tổng a + b bằng?
Đề thi thử tốt nghiệp THPT 2020 môn Toán sở GDĐT Hưng Yên
Chiều thứ Sáu ngày 12 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Hưng Yên tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông năm học 2019 – 2020 môn thi Toán. Đề thi thử tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Hưng Yên có cấu trúc bám sát đề minh họa tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề thi gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, bản PDF và đáp án đề thi này sẽ được cập nhật trong thời gian sớm nhất có thể. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Hưng Yên : + Cho hàm số y = -x^4 + 2x^2 + 3. Mệnh đề nào sau đây là đúng? A. Đồ thị hàm số có một điểm cực đại và không có điểm cực tiểu. B. Đồ thị hàm số có một điểm cực tiểu và hai điểm cực đại. C. Đồ thị hàm số có một điểm cực tiểu và không có điểm cực đại. D. Đồ thị hàm số có một điểm cực đại và hai điểm cực tiểu. + Cho hình trụ có O, O’ là tâm hai đáy. Xét hình chữ nhật ABCD có A, B cùng thuộc (O) và C, D cùng thuộc (O’) sao cho AB = a√3, BC = 2a đồng thời (ABCD) tạo với mặt phẳng đáy hình trụ góc 60°. Thể tích khối trụ bằng? + Số lượng của một loại vi khuẩn X trong phòng thí nghiệm được tính theo công thức x(t) = x(0).2^t, trong đó x(0) là số lượng vi khuẩn X ban đầu, x(t) là số lượng vi khuẩn X sau t phút. Biết sau 2 phút thì số lượng vi khuẩn X là 625 nghìn con. Hỏi sau bao lâu, kể từ lúc bắt đầu, số lượng vi khuẩn X là 5 triệu con?
Đề thi thử tốt nghiệp THPT 2020 môn Toán sở GDĐT Bắc Ninh
Chiều thứ Sáu ngày 12 tháng 06 năm 2020, phòng quản lý chất lượng sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông năm học 2019 – 2020 môn thi Toán. Đề thi thử tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Bắc Ninh có cấu trúc bám sát đề minh họa tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề thi gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, bản PDF và đáp án đề thi này sẽ được cập nhật trong thời gian sớm nhất có thể. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Bắc Ninh : + Cho tứ diện ABCD có thể tích bằng 18. Gọi A1 là trọng tâm tam giác BCD; (P) là mặt phẳng qua A sao cho góc giữa (P) và (BCD) bằng 60°. Các đường thẳng qua B, C, D song song với AA1 cắt mặt phẳng (P) lần lượt tại B1, C1, D1. Thể tích khối tứ diện A1B1C1D1 bằng? [ads] + Cho hàm số bậc ba y = f(x) có đồ thị đi qua các điểm A(1;1), B(2;4), C(3;9). Các đường thẳng AB, AC, BC lại cắt đồ thị tại lần lượt tại các điểm M, N, P (M khác A và B, N khác A và C, P khác B và C). Biết rằng tổng các hoành độ của M, N, P bằng 5. Giá trị của f(0) là? + Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết SA vuông góc với (ABCD), AB = BC = a, AD = 2a, SA = a√2. Gọi E là trung điểm của AD. Bán kính mặt cầu đi qua các điểm S, A, B, C, E bằng?