Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 năm 2022 - 2023 trường THCS Nguyễn Du - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Du, quận Hoàn Kiếm, thành phố Hà Nội; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài: 90 phút (không kể thời gian phát đề); đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào ngày 18 tháng 02 năm 2023. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 trường THCS Nguyễn Du – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai vòi nước cùng chảy vào một cái bể không có nước thì sau 5 giờ sẽ đầy bể. Nếu vòi thứ nhất chảy một mình trong 3 giờ và vòi thứ 2 chảy một mình trong 4 giờ thì cả hai vòi chảy được 2 3 bể. Hỏi nếu mỗi vòi chảy một mình thì sau bao lâu sẽ đầy bể. + Cho hệ phương trình: 2 1 2 3 x y mx y. Tìm m để hệ có nghiệm duy nhất (x;y) sao cho biểu thức P = 3x + y nhận giá trị là số nguyên. + Từ một điểm A nằm ngoài đường tròn (O), kẻ hai tiếp tuyến AB AC với đường tròn (O)(B C là hai tiếp điểm). Gọi H là giao điểm của hai đường thẳng AO và BC. Qua A kẻ cát tuyến ADE với đường tròn (O) (DE O) sao cho tia AE nằm giữa hai tia AO AC và AD AE. a) Chứng minh đường thẳng AO vuông góc với đường thẳng BC. b) Chứng minh 2 AB AD AE. c) Đường phân giác của DBE cắt đường thẳng DE tại M và cắt đường tròn tại điểm thứ hai N. Chứng minh ON ⊥ DE và AB AM. d) Đường thẳng AE cắt đường thẳng BC và đường thẳng ON lần lượt tại K và I. Chứng minh 2 ID IK IA.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Yên Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Yên Thành – Nghệ An : + Lớp 9A được giao nhiệm vụ trồng 120 cây xanh được chia đều cho các học sinh. Khi thực hiện trồng cây có 10 học sinh được điều đi làm việc khác nên mỗi học sinh còn lại phải trồng thêm 1 cây nữa mới hết số cây phải trồng. Tính số học sinh của lớp 9A. + Một thùng đựng nước dạng hình trụ có chiều cao 2m và đường kính đáy 1m. Hỏi thùng này đựng đầy thì được bao nhiêu lít nước (cho π = 3,14 và độ dày của thùng không đáng kể). + Cho nửa đường tròn tâm O đường kính ABvà điểm E tùy ý trên nửa đường tròn đó (E khác A, B). Lấy điểm H thuộc đoạn EB (H khác E B). Tia AH cắt nửa đường tròn tại điểm thứ hai là F. Kéo dài tia AE và BF cắt nhau tại I. Đường thẳng IH cắt nửa đường tròn tại P và cắt AB tại K a) Chứng minh tứ giác IEHF nội tiếp được đường tròn. b) Chứng minh AIH ABE và cos PK BK ABP PA PB c) Gọi S là giao điểm của tia BF và tiếp tuyến tại A của nửa đường tròn (O).Khi tứ giác AHIS nội tiếp được đường tròn. Chứng minh EF EK.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Long Biên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 08 tháng 05 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Long Biên – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Khoảng cách giữa hai bến sông C và D là 48 km. Một ca nô đi xuôi dòng từ bến C đến bến D, nghỉ 24 phút rồi đi ngược dòng quay lại bến C. Kể từ lúc khởi hành đến khi về tới bến C hết tất cả 4 giờ. Tìm vận tốc của ca nô trong nước yên lặng, biết rằng vận tốc nước chảy là 3 km/h. + Một hình nón có độ dài đường sinh bằng 25 cm và bán kính đáy bằng 15 cm. Tính thể tích của hình nón đó (lấy pi = 3,14). + Trong mặt phẳng Oxy, cho parabol (P): y = -x2 và đường thẳng (d): y = (m + 1)x – 3. a) Với giá trị nào của m thì parabol (P) cắt đường thẳng (d) tại hai điểm phân biệt? b) Tìm các giá trị của m để parabol (P) cắt đường thẳng (d) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn |x1 – x2| = 4.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Hai Bà Trưng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào tháng 05 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Hai Bà Trưng – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Trong lễ diễu binh, diễu hành kỷ niệm 70 năm Chiến thắng Điện Biên Phủ có sự tham gia của lực lượng Pháo lễ và lực lượng Không quân. Số lượng khẩu pháo chính thức nhiều hơn số lượng máy bay trực thăng chính thức là 6. Mỗi khẩu pháo cần 3 đồng chí pháo thủ tham gia điều khiển, mỗi máy bay trực thăng cần 5 đồng chí phi công tham gia điều khiển. Biết rằng tổng số lượng chiến sĩ tham gia hoạt động diễu hành là 90 đồng chí. Tính số lượng khẩu pháo và máy bay trực thăng chính thức tham gia lễ diễu binh diễu hành. + Một hình trụ có diện tích toàn phần gấp 2 lần diện tích xung quanh. Tính thể tích hình trụ, biết rằng bán kính đáy bằng 5 cm. + Cho đường tròn (O) đường kính AB = 2R. Vẽ đường thẳng d là tiếp tuyến với đường tròn (O) tại B. Trên cung AB lấy điểm M tùy ý (M khác A và khác B), tia AM cắt đường thẳng d tại N. Qua trung điểm C của dây cung AM nối CO cắt đường thẳng d tại D. a) Chứng minh tứ giác BOCN nội tiếp được một đường tròn. b) Chứng minh ON vuông góc với AD và CA.CN = CO.CD. c) Xác định vị trí điểm M để P = 2AM + AN đạt giá trị nhỏ nhất.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 06 tháng 05 năm 2024.