Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết, các dạng toán và bài tập môn Toán 8

Tài liệu gồm 551 trang, tóm tắt lý thuyết, các dạng toán và bài tập môn Toán 8, có đáp án và lời giải chi tiết. Mục lục : Phần I Đại số. Chương 1. Phép nhân và phép chia đa thức 2. 1. Nhân đơn thức với đa thức 2. 2. Nhân đa thức với đa thức 8. 3. Những hằng đẳng thức đáng nhớ (phần 1) 13. 4. Những hằng đẳng thức đáng nhớ (phần 2) 22. 5. Những hằng đẳng thức đáng nhớ (phần 3) 28. 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung 34. 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức 41. 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử 52. 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp 64. 10. Chia đơn thức cho đơn thức 73. 11. Chia đa thức cho đơn thức 81. 12. Chia đa thức một biến đã sắp xếp 88. 13. Ôn tập chương 1 101. Chương 2. Phân thức đại số 118. 1. Phân thức đại số 118. 2. Tính chất cơ bản của phân thức 124. 3. Rút gọn phân thức 134. 4. Quy đồng mẫu thức nhiều phân thức 139. 5. Phép cộng các phân thức đại số 146. 6. Phép trừ các phân thức đại số 156. 7. Phép nhân các phân thức đại số 165. 8. Phép chia các phân thức đại số 171. 9. Biến đổi biểu thức hữu tỉ. Giá trị của phân thức 175. 10. Ôn tập chương II (phần 1) 184. 11. Ôn tập chương II (phần 2) 191. Chương 3. Phương trình bậc nhất một ẩn 196. 1. Mở đầu về phương trình 196. 2. Phương trình bậc nhất một ẩn và cách giải 202. 3. Phương trình đưa được về dạng ax + b = 0 214. 4. Phương trình tích 228. 5. Phương trình chứa ẩn ở mẫu 238. 6. Giải bài toán bằng cách lập phương trình 246. Chương 4. Bất phương trình 254. 1. Liên hệ giữa thứ tự và phép cộng 254. 2. Liên hệ giữa thứ tự và phép nhân 260. 3. Bất phương trình một ẩn 264. 4. Bất phương trình bậc nhất một ẩn 269. 5. Phương trình chứa dấu giá trị tuyệt đối 282. 6. Ôn tập chương IV 297. Phần II Hình học. Chương 1. Tứ giác 306. 1. Tứ giác 306. 2. Hình thang 312. 3. Hình thang cân 318. 4. Đường trung bình của tam giác, của hình thang 324. 5. Đối xứng trục 331. 6. Hình bình hành 337. 7. Đối xứng tâm 344. 8. Hình chữ nhật 349. 9. Đường thẳng song song với một đường thẳng cho trước 358. 10. Hình thoi 364. 11. Hình vuông 371. 12. Ôn tập chương 1 378. Chương 2. Đa giác. Diện tích đa giác 386. 1. Đa giác. Đa giác đều 386. 2. Diện tích hình chữ nhật 392. 3. Diện tích tam giác 398. 4. Diện tích hình thang 404. 5. Diện tích hình thoi 410. 6. Diện tích đa giác 414. 7. Ôn tập chương II 417. Chương 3. Tam giác đồng dạng 422. 1. Định lý Ta-lét 422. 2. Định lý đảo và hệ quả của định lý Ta-lét 428. 3. Tính chất của đường phân giác của tam giác 436. 4. Khái niệm hai tam giác đồng dạng 443. 5. Trường hợp đồng dạng thứ nhất 449. 6. Trường hợp đồng dạng thứ hai 453. 7. Trường hợp đồng dạng thứ ba 458. 8. Các trường hợp đồng dạng của tam giác vuông 463. 9. Ôn tập chương III 469. Chương 4. Hình lăng trụ đứng. Hình chóp đều 479. 1. Hình hộp chữ nhật 479. 2. Thể tích của hình hộp chữ nhật 488. 3. Hình lăng trụ đứng 494. 4. Diện tích xung quanh và thể tích hình lăng trụ đứng 503. 5. Hình chóp đều và hình chóp cụt đều 511. 6. Diện tích xung quanh và thể tích của hình chóp đều 517. 7. Ôn tập chương 4 523. 8. Đề kiểm tra chương 4 528.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề rút gọn phân thức
Nội dung Chuyên đề rút gọn phân thức Bản PDF - Nội dung bài viết Tóm tắt chuyên đề rút gọn phân thứcTóm tắt lý thuyếtBài tập và các dạng toán Tóm tắt chuyên đề rút gọn phân thức Chuyên đề rút gọn phân thức là một phần quan trọng trong chương trình Đại số 8 chương 2: Phân thức đại số. Tài liệu được biên soạn gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao. Tóm tắt lý thuyết Để rút gọn phân thức, ta cần sử dụng các phương pháp phân tích đa thức thành nhân tử để biến đổi cả tử và mẫu của phân thức. Sau đó, sử dụng các tính chất cơ bản của phân thức đã học để rút gọn phân thức đã cho. Bài tập và các dạng toán Trên tài liệu, các dạng toán chính bao gồm: Dạng 1: Rút gọn phân thức bằng cách phân tích tử thức và mẫu thức thành nhân tử, sau đó rút gọn bằng cách triệt tiêu nhân tử chung. Dạng 2: Chứng minh đẳng thức, tương tự các bước chứng minh đẳng thức đã học trong chuyên đề trước. Dạng 3: Rút gọn biểu thức với điều kiện cho trước, sử dụng phương pháp phân tích đa thức thành nhân tử và các tính chất cơ bản của phân thức. Dạng 4: Chứng minh biểu thức không phụ thuộc vào biến x, thông qua việc rút gọn phân thức sao cho không còn các ẩn. Để làm bài tập hiệu quả, học sinh cần hiểu rõ lý thuyết và áp dụng đúng các phương pháp đã học. Tài liệu cũng cung cấp đáp án và lời giải chi tiết, giúp học sinh tự kiểm tra và cải thiện kỹ năng giải toán của mình.
Chuyên đề tính chất cơ bản của phân thức
Nội dung Chuyên đề tính chất cơ bản của phân thức Bản PDF - Nội dung bài viết Chuyên đề tính chất cơ bản của phân thức Chuyên đề tính chất cơ bản của phân thức Chuyên đề này bao gồm 12 trang tài liệu, tập trung vào các khái niệm cơ bản về phân thức, bao gồm tính chất cơ bản và quy tắc đối dấu. Nội dung tóm tắt lý thuyết quan trọng cần nắm vững, cung cấp hướng dẫn chi tiết về cách giải các dạng toán phân thức. Bên cạnh đó, sách cũng tuyển chọn các bài tập từ dễ đến khó để học sinh có thể ôn tập và rèn luyện kỹ năng. Mỗi bài tập đi kèm đáp án và lời giải chi tiết, giúp học sinh tự học và tự kiểm tra kiến thức của mình. Đối với tóm tắt lý thuyết, trọng tâm là về tính chất cơ bản của phân thức và quy tắc đối dấu. Các bài tập được phân loại theo từng dạng toán, từ việc tìm đa thức thỏa mãn đẳng thức cho trước đến việc chứng minh cặp phân thức bằng nhau. Để giải các bài tập, học sinh cần phân tích tử thức và mẫu thức, rút gọn phân thức và áp dụng tính chất cơ bản để giải quyết vấn đề. Đồng thời, có cả những bài tập nâng cao để thách thức học sinh và giúp họ phát triển kỹ năng giải toán của mình. Chuyên đề này được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. Nó cung cấp kiến thức cơ bản và nâng cao về phân thức, giúp học sinh hiểu rõ và áp dụng các khái niệm trong thực tế. Bằng cách ôn tập và rèn luyện qua các bài tập, học sinh sẽ nâng cao khả năng giải toán và tự tin hơn khi đối mặt với các bài toán về phân thức.
Chuyên đề phân thức đại số
Nội dung Chuyên đề phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề Phân thức đại số Chuyên đề Phân thức đại số Chuyên đề này bao gồm tài liệu gồm 14 trang, tập trung vào phân thức đại số trong chương trình Đại số 8 chương 2: Phân thức đại số. Tài liệu tóm tắt lý thuyết cần đạt, phân dạng và hướng dẫn giải các dạng toán liên quan đến phân thức đại số. Ngoài ra, tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao để hỗ trợ học sinh trong quá trình học tập. Trước hết, chúng ta cần hiểu rằng một phân thức đại số được biểu diễn dưới dạng A/B với A và B là các đa thức và B khác 0. Để chứng minh một phân thức luôn có nghĩa, ta có thể sử dụng các cách biến đổi thông dụng để triệt tiêu nhân từ chung và rút gọn phân thức. Để tìm đa thức trong đẳng thức, ta phân tích tử thức và mẫu thức thành nhân tử và sau đó triệt tiêu nhân tử chung. Để tìm giá trị của x sao cho phân thức bằng 0, ta đặt điều kiện cho mẫu khác 0, sau đó nhân mẫu thức với 0 và cho tử bằng 0 để tìm giá trị của x. Cuối cùng, để chứng minh đẳng thức có điều kiện, ta áp dụng tính chất của hai phân thức bằng nhau và dựa vào điều kiện đã cho để lập luận. Qua chuyên đề này, học sinh sẽ được trang bị kiến thức vững chắc về phân thức đại số và có thể áp dụng vào việc giải các bài tập phức tạp trong môn Đại số.
Chuyên đề chia đa thức một biến đã sắp xếp
Nội dung Chuyên đề chia đa thức một biến đã sắp xếp Bản PDF - Nội dung bài viết Tài liệu Chuyên đề chia đa thức một biến đã sắp xếpBài giảng củng cố kiến thức nềnPhiếu bài tập tự luyện Tài liệu Chuyên đề chia đa thức một biến đã sắp xếp Tài liệu này bao gồm 18 trang và tập trung vào các kiến thức quan trọng cần nắm vững, cách phân dạng và hướng dẫn cách giải các dạng toán liên quan đến chia đa thức một biến đã sắp xếp. Nó cung cấp một lược đồ chi tiết về cách giải từ những bài cơ bản đến nâng cao trong chuyên đề này. Bài giảng củng cố kiến thức nền I. Lý thuyết: Tóm tắt các bước cần thực hiện khi chia đa thức một biến đã sắp xếp. II. Các dạng bài tập: Dạng 1: Hướng dẫn phép chia đa thức một biến đã sắp xếp (khi phép chia hết). Dạng 2: Cách thực hiện phép chia khi có dư. Dạng 3: Chia đa thức một biến đã sắp xếp có chứa tham số m. Dạng 4: Tìm giá trị để phép chia hết cho số chia. Phiếu bài tập tự luyện Tài liệu này cung cấp các dạng bài tập như sau: Dạng 1: Chia đa thức một biến đã sắp xếp. Dạng 2: Sắp xếp đa thức theo luỹ thừa giảm dần trước khi chia. Dạng 3: Tìm giá trị x. Dạng 4: Phân tích đa thức thành nhân tử và thực hiện phép chia. Dạng 5: Sử dụng hằng đẳng thức khi chia đa thức. Dạng 6: Tính đa thức M. Dạng 7: Tìm giá trị a và b để đa thức A chia hết cho B.