Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết, các dạng toán và bài tập môn Toán 8

Tài liệu gồm 551 trang, tóm tắt lý thuyết, các dạng toán và bài tập môn Toán 8, có đáp án và lời giải chi tiết. Mục lục : Phần I Đại số. Chương 1. Phép nhân và phép chia đa thức 2. 1. Nhân đơn thức với đa thức 2. 2. Nhân đa thức với đa thức 8. 3. Những hằng đẳng thức đáng nhớ (phần 1) 13. 4. Những hằng đẳng thức đáng nhớ (phần 2) 22. 5. Những hằng đẳng thức đáng nhớ (phần 3) 28. 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung 34. 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức 41. 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử 52. 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp 64. 10. Chia đơn thức cho đơn thức 73. 11. Chia đa thức cho đơn thức 81. 12. Chia đa thức một biến đã sắp xếp 88. 13. Ôn tập chương 1 101. Chương 2. Phân thức đại số 118. 1. Phân thức đại số 118. 2. Tính chất cơ bản của phân thức 124. 3. Rút gọn phân thức 134. 4. Quy đồng mẫu thức nhiều phân thức 139. 5. Phép cộng các phân thức đại số 146. 6. Phép trừ các phân thức đại số 156. 7. Phép nhân các phân thức đại số 165. 8. Phép chia các phân thức đại số 171. 9. Biến đổi biểu thức hữu tỉ. Giá trị của phân thức 175. 10. Ôn tập chương II (phần 1) 184. 11. Ôn tập chương II (phần 2) 191. Chương 3. Phương trình bậc nhất một ẩn 196. 1. Mở đầu về phương trình 196. 2. Phương trình bậc nhất một ẩn và cách giải 202. 3. Phương trình đưa được về dạng ax + b = 0 214. 4. Phương trình tích 228. 5. Phương trình chứa ẩn ở mẫu 238. 6. Giải bài toán bằng cách lập phương trình 246. Chương 4. Bất phương trình 254. 1. Liên hệ giữa thứ tự và phép cộng 254. 2. Liên hệ giữa thứ tự và phép nhân 260. 3. Bất phương trình một ẩn 264. 4. Bất phương trình bậc nhất một ẩn 269. 5. Phương trình chứa dấu giá trị tuyệt đối 282. 6. Ôn tập chương IV 297. Phần II Hình học. Chương 1. Tứ giác 306. 1. Tứ giác 306. 2. Hình thang 312. 3. Hình thang cân 318. 4. Đường trung bình của tam giác, của hình thang 324. 5. Đối xứng trục 331. 6. Hình bình hành 337. 7. Đối xứng tâm 344. 8. Hình chữ nhật 349. 9. Đường thẳng song song với một đường thẳng cho trước 358. 10. Hình thoi 364. 11. Hình vuông 371. 12. Ôn tập chương 1 378. Chương 2. Đa giác. Diện tích đa giác 386. 1. Đa giác. Đa giác đều 386. 2. Diện tích hình chữ nhật 392. 3. Diện tích tam giác 398. 4. Diện tích hình thang 404. 5. Diện tích hình thoi 410. 6. Diện tích đa giác 414. 7. Ôn tập chương II 417. Chương 3. Tam giác đồng dạng 422. 1. Định lý Ta-lét 422. 2. Định lý đảo và hệ quả của định lý Ta-lét 428. 3. Tính chất của đường phân giác của tam giác 436. 4. Khái niệm hai tam giác đồng dạng 443. 5. Trường hợp đồng dạng thứ nhất 449. 6. Trường hợp đồng dạng thứ hai 453. 7. Trường hợp đồng dạng thứ ba 458. 8. Các trường hợp đồng dạng của tam giác vuông 463. 9. Ôn tập chương III 469. Chương 4. Hình lăng trụ đứng. Hình chóp đều 479. 1. Hình hộp chữ nhật 479. 2. Thể tích của hình hộp chữ nhật 488. 3. Hình lăng trụ đứng 494. 4. Diện tích xung quanh và thể tích hình lăng trụ đứng 503. 5. Hình chóp đều và hình chóp cụt đều 511. 6. Diện tích xung quanh và thể tích của hình chóp đều 517. 7. Ôn tập chương 4 523. 8. Đề kiểm tra chương 4 528.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề bất đẳng thức bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 47 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề bất đẳng thức bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Sử dụng định nghĩa: A > B ta xét hiệu A – B > 0, chú ý bất đẳng thức a2 >= 0. Dạng 2. Sử dụng bất đẳng thức phụ. Dạng 3. Bất đẳng thức Cosi và Schawrz. Dạng 4. Sắp sếp các biến và bất đẳng thức tam giác. Dạng 5. Tìm điểm rơi của bất đẳng thức Cosi.
Hướng dẫn ôn tập học kì 1 Toán 8 năm 2021 - 2022 trường THCS Thanh Am - Hà Nội
Tài liệu đề cương hướng dẫn ôn tập học kì 1 Toán 8 năm 2021 – 2022 trường THCS Thanh Am – Hà Nội gồm 11 trang. I. LÝ THUYẾT 1. Đại số: – Phép nhân và phép chia đa thức. – Các hằng đẳng thức đáng nhớ. – Các phương pháp phân tích đa thức thành nhân tử. – Cộng, trừ các phân thức đại số. 2. Hình học: – Định nghĩa, tính chất, dấu hiệu nhận biết của: hình thang, hình thang cân, hình bình hành, hình chữ nhật, hình thoi, hình vuông. – Đường trung bình của tam giác, hình thang. – Đối xứng trục, đối xứng tâm. II. CÂU HỎI TRẮC NGHIỆM THAM KHẢO
Đề cương ôn tập học kì 1 Toán 8 năm 2021 - 2022 trường THCS Thăng Long - Hà Nội
Đề cương ôn tập học kì 1 Toán 8 năm học 2021 – 2022 trường THCS Thăng Long, quận Ba Đình, thành phố Hà Nội gồm 04 trang, hướng dẫn nội dung Toán 8 học sinh cần ghi nhớ và tuyển chọn các bài toán tự luyện Toán 8 giúp học sinh thử sức để chuẩn bị cho đợt kiểm tra cuối học kì 1 Toán 8 sắp tới. A. PHẦN ĐẠI SỐ I. KIẾN THỨC CƠ BẢN. 1) Các quy tắc nhân, chia đơn thức, đa thức, biết cách chia hai đa thức 1 biến. 2) 7 hằng đẳng thức – các phương pháp phân tích đa thức thành nhân tử. 3) Tính chất cơ bản của phân thức, các quy tắc đổi dấu – quy tắc rút gọn phân thức, tìm mẫu thức chung, quy đồng mẫu thức. 4) Các quy tắc: cộng, trừ, nhân, chia các phân thức đại số. II. CÁC BÀI TẬP TỰ LUYỆN. B. PHẦN HÌNH HỌC I. KIẾN THỨC CƠ BẢN. II. CÁC DẠNG TOÁN.
Chuyên đề giá trị lớn nhất, giá trị nhỏ nhất của biểu thức bồi dưỡng HSG Toán 8
Tài liệu gồm 57 trang, hướng dẫn giải các dạng toán chuyên đề giá trị lớn nhất, giá trị nhỏ nhất của biểu thức bồi dưỡng HSG Toán 8, giúp học sinh lớp 8 ôn tập, rèn luyện để chuẩn bị cho kì thi học sinh giỏi môn Toán 8 các cấp. A. Giá trị lớn nhất, giá trị nhỏ nhất của một biểu thức Nếu với mọi giá trị của biến thuộc một khoảng xác định nào đó mà giá trị của biểu thức A luôn luôn lớn hơn hoặc bằng (nhỏ hơn hoặc bằng) một hằng số k và tồn tại một giá trị của biến để A có giá trị bằng k thì k gọi là giá trị nhỏ nhất (giá trị lớn nhất) của biểu thức A ứng với các giá trị của biểu thức thuộc khoảng xác định nói trên. B. Các dạng toán Dạng 1 : Tìm GTLN – GTNN của tam thức bậc hai ax2 + bx + c. Phương pháp: Áp dụng hằng đẳng thức số 1 và số 2. Dạng 2 : Tìm GTLN – GTNN của đa thức có bậc cao hơn 2. Phương pháp: Ta đưa về dạng tổng bình phương. Dạng 3 : Đa thức có từ 2 biến trở lên. Phương pháp: Đa số các biểu thức có dạng 2 2 F x y ax by cxy dx ey h a b c. Ta đưa dần các biến vào trong hằng đẳng thức 2 2 2 a ab b a b như sau 2 2 F x y mK x y nG y r hoặc 2 2 F x y mK x y nH x r. Trong đó G y H x là biểu thức bậc nhất đối với biến, còn K x y px qy k cũng là biểu thức bậc nhất đối với cả hai biến x và y. Cụ thể: Ta biến đổi (1) để chuyển về dạng (2) như sau với 2 a ac b 0 4 0. Nếu m > 0, n > 0 thì ta tìm được giá trị nhỏ nhất. Nếu m < 0, n < 0 thì ta tìm được giá trị lớn nhất. Dễ thấy rằng luôn tồn tại (x;y) để có dấu của đẳng thức, như vậy ta sẽ tìm được cực trị của đa thức đã cho. Trong cả hai trường hợp trên: Nếu r = 0 thì phương trình F(x;y) = 0 có nghiệm. Nếu F x y r thì không có nào thỏa mãn F(x;y) = 0. Nếu a ac b r F x y phân tích được tích của hai nhân tử, giúp ta giải được các bài toán khác. Dạng 4 : Tìm GTLN – GTNN của biểu thức có quan hệ ràng buộc giữa các biến. Phương pháp: – Dồn biến từ điều kiền rồi thay vào biểu thức. – Biến đổi biểu thức thành các thành phần có chứa điều kiện để thay thế. – Sử dụng thêm một số bất đẳng thức phụ. Dạng 5 : Phương pháp đổi biến số. Phương pháp: – Phân tích thành các biểu thức tương đồng để đặt ẩn phụ. – Sử dụng phương pháp nhóm hợp lý làm xuất hiện nhân tử để đặt ẩn phụ. – Sử dụng các hằng đẳng thức. Dạng 6 : Sử dụng bất đẳng thức có chứa dấu giá trị tuyệt đối. Dạng 7 : Dạng phân thức. A. Phân thức có tử là hằng số, mẫu là tam thức bậc hai. Phương pháp: Biểu thức dạng này đạt giá trị nhỏ nhất khi mẫu đạt giá trị lớn nhất. B. Phân thức có mẫu là bình phương của một nhị thức. Cách 1: Tách tử thành các nhóm có nhân tử chung với mẫu. Cách 2: Viết biểu thức A thành tổng của một số với một phân thức không âm. C. Tìm GTLN – GTNN của phân thức có dạng khác. Cách 1: Tách tử thành các nhóm có nhân tử chung với mẫu. Cách 2: Viết biểu thức A thành tổng của một số với một phân thức không âm. 1. Bậc của tử nhỏ hơn bậc của mẫu. 2. Bậc của tử bằng bậc của mẫu.