Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Đạ Tẻh Lâm Đồng

Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Đạ Tẻh Lâm Đồng Bản PDF - Nội dung bài viết Giới thiệu Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Đạ Tẻh Lâm Đồng Giới thiệu Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Đạ Tẻh Lâm Đồng Chào mừng đến với bài thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2022 - 2023 do phòng Giáo dục và Đào tạo huyện Đạ Tẻh, tỉnh Lâm Đồng tổ chức. Đề thi này mang đến cho các em học sinh lớp 9 một cơ hội thử thách và phấn đấu để phát triển tài năng toán học của mình. Bài toán đầu tiên đưa ra tình huống thú vị giữa hai bạn thân An và Bình. An muốn đến nhà Bình chơi nhưng không nhớ số nhà. Bình cung cấp cho An bốn thông tin về số nhà của mình, trong đó có ba thông tin đúng và một thông tin sai. Hãy giúp An tìm ra đúng số nhà của Bình bằng cách suy luận logic và khéo léo. Bài toán thứ hai liên quan đến việc xử lý hình ảnh và tính toán diện tích. Chiếc logo được thiết kế từ ba hình chữ nhật cùng kích thước, sau đó được cắt thành ba phần A, B và C. Nhiệm vụ của bạn là tính diện tích của phần A, giúp bạn hiểu rõ hơn về khái niệm diện tích và tư duy hình học. Cuối cùng, bài toán cuối cùng hướng bạn vào việc giải quyết vấn đề liên quan đến diện tích hình học của một thửa ruộng hình chữ nhật. Đây là một bài toán thực tế, yêu cầu bạn áp dụng kiến thức và logic để giải quyết. Hy vọng rằng các em sẽ vượt qua thử thách này với sự tự tin, kiên nhẫn và sự cố gắng, từ đó nâng cao kiến thức và kỹ năng toán học của mình. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Nghệ An
Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Nghệ An Bản PDF - Nội dung bài viết Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán Nghệ An 2022-2023 Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán Nghệ An 2022-2023 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2022-2023 của Sở Giáo dục và Đào tạo tỉnh Nghệ An (Bảng A và B); kỳ thi sẽ diễn ra vào Chủ Nhật ngày 12 tháng 02 năm 2023. Một số câu hỏi trích dẫn từ đề học sinh giỏi cấp tỉnh Toán lớp 9 Nghệ An 2022-2023: + Cho các số thực dương x, y, z thỏa mãn x2 - y2 + z2 = xy + 3yz + zx. Hãy tìm giá trị lớn nhất của biểu thức P. + Trên một khu đất hình chữ nhật kích thước 100m x 120m, người ta muốn xây một sân bóng nhân tạo có nền đất hình chữ nhật kích thước 25m x 35m và 9 bồn hoa hình tròn đường kính 5m. Chứng minh rằng luôn tìm được một nền đất kích thước 25m x 35m để xây sân bóng dù đã xây trước 9 bồn hoa ở các vị trí như thế nào. Hãy tham gia thử thách và chinh phục các thí nghiệm thú vị từ bài toán này!
Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bắc Ninh
Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh Bắc Ninh năm 2022-2023 Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh Bắc Ninh năm 2022-2023 Chào đón quý thầy, cô và các em học sinh lớp 9! Sytu hân hạnh mang đến đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2022-2023 của sở GD&ĐT Bắc Ninh. Kỳ thi sẽ diễn ra vào thứ Sáu, ngày 10 tháng 02 năm 2023.
Đề HSG lớp 9 môn Toán vòng 2 năm 2022 2023 trường THCS Nguyễn Tri Phương TT Huế
Nội dung Đề HSG lớp 9 môn Toán vòng 2 năm 2022 2023 trường THCS Nguyễn Tri Phương TT Huế Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 vòng 2 năm 2022 - 2023 Trường THCS Nguyễn Tri Phương TT Huế Đề HSG Toán lớp 9 vòng 2 năm 2022 - 2023 Trường THCS Nguyễn Tri Phương TT Huế Chào mừng đến với đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 2 năm học 2022 - 2023 của trường THCS Nguyễn Tri Phương, tỉnh Thừa Thiên Huế. Đề thi này sẽ giúp các em học sinh ôn tập và kiểm tra kiến thức Toán của mình thông qua các bài toán thú vị và thách thức. 1. Chứng minh rằng không tồn tại cặp số nguyên x, y nào thỏa mãn phương trình: 4x² + 9y² = 1987 + 13xy. 2. Đề bài cho một số chính phương A có 4 chữ số. Nếu cộng thêm vào mỗi chữ số của A với 3 ta được số chính phương B cũng có 4 chữ số. Hãy tìm giá trị của A và giải thích cách làm. 3. Xét đường tròn (O;R), chọn điểm A sao cho OA = 2R. Gọi B, C lần lượt là giao điểm của đường tròn (O) với đường tròn đường kính OA. Đường thẳng Ax không trùng AO cắt (O) tại D và E (AD < AE). Gọi F là trung điểm của DE. Chứng minh rằng: 3.1. FB + FC = FA 3.2. Nếu FB < FC thì FB < BD. 4. Tam giác nhọn ABC có ABC = 60° nội tiếp đường tròn (O;R). Đường thẳng Ox vuông góc AO cắt AC, AB lần lượt tại D và E. 4.1. Chứng minh 4 điểm B, C, D, E cùng thuộc một đường tròn. 4.2. Tính bán kính đường tròn ngoại tiếp tam giác ODC theo R. Chúc quý thầy cô giáo và các em học sinh lớp 9 của trường THCS Nguyễn Tri Phương TT Huế ôn tập hiệu quả và giải bài tập thật tốt. Hy vọng đề thi này sẽ giúp các em phát triển và thành công trong học tập.
Đề học sinh giỏi Toán THCS năm 2022 2023 phòng GD ĐT Lương Sơn Hòa Bình
Nội dung Đề học sinh giỏi Toán THCS năm 2022 2023 phòng GD ĐT Lương Sơn Hòa Bình Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi Toán THCS năm 2022-2023 phòng GD&ĐT Lương Sơn Hòa Bình Đề thi chọn học sinh giỏi Toán THCS năm 2022-2023 phòng GD&ĐT Lương Sơn Hòa Bình Chào quý thầy cô giáo và các em học sinh lớp 9, mùa thi học sinh giỏi môn Toán cấp THCS năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Lương Sơn, tỉnh Hòa Bình đã sắp đến. Kỳ thi sẽ diễn ra vào ngày ... tháng 02 năm 2023. Dưới đây là một số câu hỏi trích từ Đề học sinh giỏi Toán THCS năm 2022-2023 do phòng GD&ĐT Lương Sơn - Hòa Bình ra: 1. Có hai can đựng dầu, can thứ nhất đang chứa 48 lít và can thứ hai đang chứa 32 lít. Nếu rót từ can thứ nhất sang cho đầy can thứ hai thì lượng dầu trong can thứ nhất chỉ còn lại một nửa thể tích của nó. Nếu rót từ can thứ hai sang cho đầy can thứ nhất thì lượng dầu trong can thứ hai chỉ còn lại một phần ba thể tích của nó. Hãy tính thể tích của mỗi can. 2. Cho đường thẳng y = (m - 2)x - 2m + 1: - Chứng minh rằng đường thẳng này luôn đi qua một điểm cố định với mọi giá trị của m. - Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng có giá trị lớn nhất. - Tìm m để đường thẳng tạo với các trục tọa độ tam giác có diện tích bằng 1/2. 3. Đoạn thẳng AB. Trên nửa mặt phẳng bờ AB, vẽ nửa đường tròn đường kính AB và các tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn này, kẻ tiếp tuyến cắt Ax, By tại C và D. Gọi N là giao điểm của AD và BC. Hãy: - Chứng minh rằng MN vuông góc với AB. - Chứng minh rằng AC = CE. - Chứng minh rằng BM.BE = AK.AD. Hy vọng rằng các em có thể làm tốt bài thi và đạt kết quả cao trong kỳ thi sắp tới. Chúc quý thầy cô giáo và các em học sinh lớp 9 luôn thành công và nỗ lực trong hành trình học tập của mình!