Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 12 môn Toán năm 2020 2021 trường Lê Quý Đôn Hải Phòng

Nội dung Đề khảo sát lần 1 lớp 12 môn Toán năm 2020 2021 trường Lê Quý Đôn Hải Phòng Bản PDF Đề khảo sát chất lượng lần 1 môn Toán lớp 12 năm học 2020 – 2021 trường THPT Lê Quý Đôn – Hải Phòng có đáp án và lời giải chi tiết. Trích dẫn đề khảo sát lần 1 Toán lớp 12 năm 2020 – 2021 trường Lê Quý Đôn – Hải Phòng : + Một cây kem ốc quế gồm hai phần, phần em có dạng hình cầu, phần ốc quế có dạng hình nón, giải sử hình cầu và hình nón có bán kính bằng nhau, biết rằng nếu kem tan chảy hết sẽ làm đầy phần ốc quế. Biết thể tích kem sau khi tan chảy bằng 75% thể tích kem đóng băng ban đầu, gọi h, r lần lượt là chiều cao và bán kính của phần ốc quế. Tỉnh tỉ số h/r. + Có 18 bạn thi Toán và KHTN bằng Tiếng Anh được khen thưởng gồm 9 nam và 9 nữ, tất cả các học sinh nam có chiều cao khác nhau, học sinh nữ có chiều cao khác nhau. Thầy Chinh xếp ngẫu nhiên các bạn thành một hàng ngang để chụp ảnh kỉ niệm sao cho tính từ trái sang phải các học sinh nam có chiều cao giảm dần và các học sinh nữ có chiều cao tăng dần. Xác suất để các bạn nam và các bạn nữ đứng xen kẽ theo cách trên là? + Cho lăng trụ tam giác đều ABC.A’B’C’. Trên tia đối của tia B’A’ lấy điểm M sao cho B’M = 1/2.B’A’. Gọi N, P lần lượt là trung điểm của A’C’, BB’. Mặt phẳng (MNP) chia khối trụ ABC.A’B’C’ thành hai khối đa diện, trong đó khối đa diện có chứa đỉnh A’ có thể tích V1 và khối đa diện chứa đỉnh C’ có thể tích V2. Tỉ số V1/V2 bằng?

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Phú Thọ
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Phú Thọ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Phú Thọ (mã đề 102); kỳ thi được diễn ra vào ngày … tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Phú Thọ : + Trong không gian Oxyz, cho hai điểm A(2;-2:6), B(3;3;-9) và mặt phẳng (P): 2x + 2y – z – 12 = 0. Điểm M di động trên (P) sao cho MA và MB luôn tạo với (P) các góc bằng nhau. Biết M luôn thuộc một đường tròn cố định. Tung độ của tâm đường tròn đó bằng? + Cho hàm số y = f(x) có đạo hàm cấp hai liên tục trên R. Hình vẽ bên dưới là đồ thị hàm số y = f'(x) trên (-vc;-2], đồ thị hàm số y = f(x) trên đoạn [-2;3] và đồ thị hàm số y = f”(x) trên [3;+vc). Số điểm cực trị tối đa của hàm số y = f(x) là? + Cho hàm số f(x) = ax4 + bx2 + c có đồ thị như hình vẽ. Biết miền tô đậm có diện tích bằng 4/15 và điểm B có hoành độ bằng -1. Số giá trị nguyên của tham số m thuộc đoạn [-3;3] để hàm số y = f(m – 3^x) có đúng một điểm cực trị là?
Đề đánh giá chất lượng lớp 12 môn Toán năm 2021 2022 trường Đại học Hồng Đức Thanh Hóa
Nội dung Đề đánh giá chất lượng lớp 12 môn Toán năm 2021 2022 trường Đại học Hồng Đức Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi đánh giá chất lượng môn Toán lớp 12 năm học 2021 – 2022 trường Đại học Hồng Đức, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề đánh giá chất lượng Toán lớp 12 năm 2021 – 2022 trường Đại học Hồng Đức – Thanh Hóa : + Cho hình nón đỉnh S có độ dài đường cao là R và đáy là đường tròn tâm O bán kính R. Gọi (d) là tiếp tuyến của đường tròn đáy tại A và (P) là mặt phẳng chứa SA và (d). Mặt phẳng (Q) thay đổi qua S cắt đường tròn O tại hai điểm C, D sao cho CD = √3R. Gọi α là góc tạo bởi (P) và (Q). Tính giá trị lớn nhất của cos α. + Cho hàm số f(x) = x3 + ax2 + bx + c (a, b, c ∈ R) có hai điểm cực trị là −1 và 1. Gọi y = g(x) là hàm số bậc hai có đồ thị cắt trục hoành tại hai điểm có hoành độ trùng với các điểm cực trị của f(x), đồng thời có đỉnh nằm trên đồ thị của f(x) với tung độ bằng 2. Diện tích hình phẳng giới hạn bởi hai đường y = f(x) và y = g(x) gần với giá trị nào nhất dưới đây? + Cho hàm đa thức y = fx2 + 2x có đồ thị cắt trục Ox tại 5 điểm phân biệt như hình vẽ. Hỏi có bao nhiêu giá trị của tham số m với 2022m ∈ Z để hàm số g (x) = fx2 − 2 |x − 1| − 2x + m có 9 điểm cực trị?