Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán - Nguyễn Hoàng Việt

Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán gồm 193 trang, được biên soạn bởi thầy giáo Th.S Nguyễn Hoàng Việt (giáo viên Toán trường THPT Lương Thế Vinh, tỉnh Quảng Bình). MỤC LỤC : Câu 39 1. Câu 40 12. + Dạng 1. Sự tương giao biết đồ thị hàm f(x) – loại không có tham số m 12. + Dạng 2. Sự tương giao biết đồ thị hàm f(x) – Loại có tham số m 18. + Dạng 3. Sự tương giao biết đồ thị hàm f(x) – Loại có chứa hàm lượng giác 21. + Dạng 4. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại không có tham số m 23. + Dạng 5. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại có tham số m 32. + Dạng 6. Sự tương giao biết bảng biến thiên hàm số f(x) – Có chứa hàm số lượng giác 34. Câu 41 37. + Dạng 7. Tính nguyên hàm & tích phân sử dụng tính chất và nguyên hàm cơ bản 37. + Dạng 8. Tính nguyên hàm & tích phân bằng phương pháp đổi biến 41. + Dạng 9. Tích phân từng phần 45. + Dạng 10. Tích phân hàm ẩn 50. Câu 42 58. Câu 43 68. + Dạng 11. Tham số m của phương trình bậc hai 68. + Dạng 12. Phương trình đưa về bậc hai 70. + Dạng 13. Tìm số phức thỏa mãn điều kiện cho trước 72. + Dạng 14. Tính toán các yếu tố của số phức (mức vận dụng) 74. + Dạng 15. Bài toán tập hợp điểm 77. Câu 44 81. + Dạng 16. Bài toán min – max với quỹ tích là đường tròn (Phương pháp hình học) 82. + Dạng 17. Bài toán min – max với quỹ tích là đường tròn (Phương pháp đại số) 91. + Dạng 18. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp hình học) 97. + Dạng 19. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp đại số) 100. + Dạng 20. Bài toán min – max với quỹ tích là đường tròn, đường thẳng (Phương pháp hình học) 104. + Dạng 21. Bài toán min – max với quỹ tích là elip 109. + Dạng 22. Bài toán min – max với quỹ tích là pararbol 110. + Dạng 23. Bài toán min – max với quỹ tích là hyperbol 113. Câu 45 115. + Dạng 24. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số f0(x), g0(x) khi biết các cực trị của hàm số f(x) − g(x) hoặc các cực trị của hàm số f0(x) − g0 (x) 116. + Dạng 25. Tính diện tích hình phẳng dựa vào tính chất đồ thị và các hoành độ tiếp điểm 118. + Dạng 26. Ứng dụng diện tích hình phẳng để so sánh giá trị hàm số 120 . + Dạng 27. Ứng dụng diện tích hình phẳng để tính tích phân 123 . Câu 46 126. + Dạng 28. Lập đường thẳng đi qua một điểm A, cắt đường thẳng d1 và song song với mặt phẳng (P) 126. + Dạng 29. Lập đường thẳng d đi qua M, vuông góc với d1 và cắt d2 130. + Dạng 30. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua giao điểm 131. + Dạng 31. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua tích có hướng 133. Câu 47 136. + Dạng 32. Khối nón bị cắt bởi một mặt phẳng đi qua đỉnh và không qua trục 136. + Dạng 33. Khối nón nội tiếp, ngoại tiếp khối tròn xoay hoặc khối đa diện 138. + Dạng 34. Khối trụ bị cắt bởi một mặt phẳng song song với trục 139. + Dạng 35. Khối trụ bị cắt bởi mặt phẳng cắt qua trục 140. + Dạng 36. Khối trụ nội tiếp ngoại tiếp khối đa diện hoặc khối tròn xoay 141. + Dạng 37. Mặt cầu ngoại tiếp khối lăng trụ 142. + Dạng 38. Mặt cầu ngoại tiếp khối chóp 143. Câu 48 148. + Dạng 39. Phương trình, bất phương trình có thể chuyển về dạng f(A) = f(B) hoặc f(A) ≤ f(B), trong đó f(x) là hàm số đơn điệu 148. + Dạng 40. Phương trình, bất phương trình f(x, y) = 0 hoặc f(x, y) ≥ 0 có hàm số f(x, y) đơn điệu theo biến x hoặc biến y 156. + Dạng 41. Phương trình, bất phương trình dạng f(x, y) = 0 hoặc f(x, y) ≥ 0, trong đó hàm số f(x, y) có đạo hàm cấp hai theo biến x hoặc biến y không đổi dấu 163. + Dạng 42. Sử dụng bất đẳng thức Bernoulli hoặc ax ≤ mx + n, ∀x ∈ [α; β] 165. Câu 49 167. + Dạng 43. Các bài toán tìm điểm 167. + Dạng 44. Các bài toán lập phương trình mặt cầu 170. + Dạng 45. Các bài toán lập phương trình mặt phẳng 173. Câu 50 178. + Dạng 46. Tìm cực trị của hàm số hợp g(x) = f[u(x)] khi biết đồ thị hàm số f(x) hay BBT hàm số f(x) 178. + Dạng 47. Tìm tham số để hàm số chứa giá trị tuyệt đối đạt giá trị lớn nhất trên một đoạn 184. + Dạng 48. Tìm tham số để hàm số hợp có số điểm cực trị cho trước 184.

Nguồn: toanmath.com

Đọc Sách

50 dạng toán phát triển đề minh họa THPT QG 2020 môn Toán lần 1
Nội dung 50 dạng toán phát triển đề minh họa THPT QG 2020 môn Toán lần 1 Bản PDF - Nội dung bài viết Sản Phẩm 50 Dạng Toán Phát Triển Đề Minh Họa THPT QG 2020 Sản Phẩm 50 Dạng Toán Phát Triển Đề Minh Họa THPT QG 2020 Tài liệu gồm 778 trang, được biên soạn bởi tập thể quý thầy, cô giáo nhóm GeoGebra Pro, tuyển tập 50 dạng toán phát triển đề minh họa THPT QG 2020 môn Toán lần 1 là tài liệu ôn tập hữu ích giúp học sinh chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2019 – 2020. Đây là một tuyển tập đa dạng các dạng toán từ lớp 1 đến lớp 50, bao gồm các chủ đề quan trọng dành cho học sinh THPT. Từ phép đếm đơn giản, cấp số cộng, đến các dạng toán phức tạp như phương trình, hàm số, logarit và số phức, tất cả đều có mặt trong tài liệu này. Mỗi dạng toán được trình bày theo ba phần: kiến thức cần nhớ, bài tập mẫu và bài tập tương tự và phát triển. Bên cạnh đó, có đáp án và lời giải chi tiết giúp học sinh hiểu rõ từng bước giải. Với sự chuẩn bị kỹ lưỡng từ nhóm tác giả là những thầy cô giáo có kinh nghiệm, tài liệu 50 dạng toán này không chỉ là công cụ học tập hữu ích mà còn là nguồn động viên và tự tin cho các học sinh trong quá trình ôn tập và thi cử. Đồng thời, nó cũng giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và tư duy logic.
Bộ đề phát triển đề minh họa tốt nghiệp THPT năm 2020 môn Toán
Nội dung Bộ đề phát triển đề minh họa tốt nghiệp THPT năm 2020 môn Toán Bản PDF - Nội dung bài viết Bộ đề phát triển đề minh họa tốt nghiệp THPT năm 2020 môn Toán Bộ đề phát triển đề minh họa tốt nghiệp THPT năm 2020 môn Toán Bộ tài liệu này là sự tổng hợp và biên soạn của thầy giáo Nguyễn Hoàng Việt, gồm 144 trang tập hợp câu hỏi và bài tập trắc nghiệm tương tự với đề minh họa tốt nghiệp THPT năm 2020 môn Toán của Bộ Giáo dục và Đào tạo. Tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh khối 12 ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT năm học 2019 – 2020. Trích dẫn từ tài liệu bộ đề phát triển đề minh họa tốt nghiệp THPT năm 2020 môn Toán: Định hướng xây dựng bài toán: Tương tự như câu 43 giữ nguyên dạng phương trình và cách đặt vấn đề cũng như yêu cầu của bài toán. Ý tưởng: Sử dụng công thức cho hình nón để giải quyết bài toán đưa ra. Sử dụng kiến thức về góc và khối lượng để tìm giải pháp cho câu hỏi. Nhận xét: Dạng toán ở mức độ thông hiểu, cần kĩ năng quan sát và đọc bảng biến thiên để giải quyết bài toán. Yêu cầu học sinh có hiểu biết sâu và biện luận logic để đạt được kết quả mong muốn. Bộ tài liệu này sẽ giúp học sinh ôn tập môn Toán một cách hiệu quả, chuẩn bị tốt cho kỳ thi tốt nghiệp THPT. Các bài tập và câu hỏi được chọn lọc kỹ càng và đa dạng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải quyết vấn đề.
Phát triển bài toán vận dụng cao đề minh họa THPT 2020 môn Toán lần 2
Nội dung Phát triển bài toán vận dụng cao đề minh họa THPT 2020 môn Toán lần 2 Bản PDF - Nội dung bài viết Phát triển bài toán vận dụng cao THPT 2020 môn Toán lần 2 Phát triển bài toán vận dụng cao THPT 2020 môn Toán lần 2 Để giúp học sinh chuẩn bị cho kỳ thi tốt nghiệp THPT năm 2020 môn Toán, thầy giáo Lê Văn Đoàn đã biên soạn một tài liệu hướng dẫn giải và phát triển các bài toán vận dụng cao (VDC) trong đề minh họa. Tài liệu này bao gồm 51 trang, tập trung vào việc giải và phát triển các bài toán từ câu 46 đến câu 50. Cụ thể, tài liệu bao gồm các dạng toán như: Câu 46: Tìm số nghiệm của phương trình liên quan đến sinx khi có bảng biến thiên Biện luận nghiệm dựa vào bảng biến thiên hoặc đồ thị hàm f(x) Bài toán kết hợp giữa hàm số và tích phân Bài toán chứa tham số m trong bài toán chứa hàm cụ thể Câu 47: Tìm GTLN – GTNN của biểu thức hai ẩn phụ thuộc vào mũ – logarit Bài toán dồn biến, rồi sử dụng bất đẳng thức Cauchy hoặc khảo sát hàm một biến Sử dụng f(u) = f(v) hoặc f(u) > f(v) hoặc f(u) < f(v) khi hai gặp hai hàm khác loại Câu 48: Tìm GTLN – GTNN của hàm phụ thuộc tham số trên đoạn Bài toán chứa tham số trong hàm cụ thể Bài toán max – min khi đề cho đồ thị hoặc bảng biến thiên Giá trị lớn nhất và nhỏ nhất của hàm trị tuyệt đối Câu 49: Thể tích khối đa diện cắt ra từ một khối khác Câu 50: Tìm số ẩn hoặc mối liên hệ giữa các ẩn trong phương trình logarit chứa hai ẩn Đây là những dạng toán phức tạp và đòi hỏi một sự am hiểu sâu sắc về lý thuyết và kỹ năng giải toán của học sinh. Hy vọng tài liệu này sẽ giúp các em tự tin và chuẩn bị tốt cho kỳ thi sắp tới.
Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2
Nội dung Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 Bản PDF - Nội dung bài viết Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 Tài liệu Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 được biên soạn bởi thầy giáo Ths. Nguyễn Chín Em và bao gồm 213 trang. Đây là tài liệu được sưu tầm kỹ lưỡng với mục đích hỗ trợ học sinh ôn tập và tự kiểm tra kiến thức trước kỳ thi quan trọng. Tài liệu này cung cấp 50 dạng toán khác nhau, từ những dạng toán cơ bản đến phức tạp, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán một cách linh hoạt. Mỗi câu hỏi và bài toán trong đề thi đều được kèm theo nhiều câu hỏi và bài toán tương tự, đồng thời có đáp án và lời giải chi tiết giúp học sinh tự kiểm tra và tự mình sửa sai. Các dạng toán trong tài liệu được chia thành nhiều cấp độ, từ lớp 1 đến lớp 50, bao gồm cả các dạng toán về hoán vị, chỉnh hợp, tổ hợp, phương trình mũ, logarit, hàm số mũ, nguyên hàm, tích phân, thể tích khối đa diện, số phức, hệ Oxyz, hàm số, và nhiều dạng toán khác. Điều này giúp học sinh tiếp cận một cách toàn diện các kiến thức cần thiết cho kỳ thi tốt nghiệp THPT. Qua tài liệu này, học sinh không chỉ được cung cấp nguồn tư liệu ôn tập mà còn được rèn luyện kỹ năng giải toán, tư duy logic và khả năng tự giác trong việc học tập. Đồng thời, tài liệu cũng giúp học sinh nâng cao kiến thức và tự tin hơn khi bước vào kỳ thi quan trọng của mình.