Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Phú Yên

Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Phú Yên Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi Toán THCS cấp tỉnh 2022 - 2023 sở GD&ĐT Phú Yên Đề thi chọn học sinh giỏi Toán THCS cấp tỉnh 2022 - 2023 sở GD&ĐT Phú Yên Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Phú Yên. Kỳ thi sẽ diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Đề thi có các câu hỏi sau: 1. Cho đường tròn (O) đường kính AB = 2R, C là trung điểm của OA, M là một điểm thuộc (C) sao cho MA > MB. Đường thẳng MC cắt (O) tại D (D khác M), đường thẳng qua D và vuông góc với AB cắt (O) tại E (E khác D), đường thẳng ME cắt đường thẳng AB tại F. - a) Chứng minh AF = AO - b) Đường thẳng qua M song song với DE cắt AB tại H và cắt (O) tại điểm thứ hai N. Chứng minh rằng ba điểm F, D, N thẳng hàng. - c) Trong trường hợp EF = MC, tính độ dài đoạn thẳng CH theo R. 2. Cho tam giác ABC vuông tại A, đường cao AD. Gọi E, F, G lần lượt là tâm đường tròn nội tiếp các tam giác ABD, ACD, ABC. Gọi H là giao điểm của hai đường thẳng AG và EF. Chứng minh rằng HG HA HE HF. Đây là những câu hỏi thú vị đòi hỏi sự tư duy logic và sự khéo léo trong giải quyết vấn đề. Chúc các em học sinh có kỳ thi thành công và đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn đội tuyển học sinh giỏi Toán 9 năm học 2017 - 2018 trường THCS Trần Mai Ninh - Thanh Hóa (Vòng 1)
Đề thi chọn đội tuyển học sinh giỏi (HSG) Toán 9 năm học 2017 – 2018 trường THCS Trần Mai Ninh – Thanh Hóa (Vòng thi thứ nhất) gồm 5 bài toán tự luận. Trích dẫn đề thi : + Cho hình vuông ABCD, có M và N theo thứ tự là trung điểm của các cạnh AB và BC, nối DN cắt CM tại I. a. Chứng minh: CI.CM = CN.CB b. Chứng minh: DI = 4IN c. Kẻ tia AH vuông góc với DN tại H và tia AH cắt CD tại P. Cho AB = a Tính diện tích tứ giác HICP [ads] + Cho a^2 + b^2 = c^2 + d^2 = 2017 và ac + bd = 0. Tính giá trị biểu thức S = ab + cd. + Cho a, b là các số nguyên dương sao cho: a + 1 và b + 2007 chia hết cho 6. Chứng minh: 4^a + a + b chia hết cho 6. + Cho x, y là các số thực dương thỏa mãn: x + y = (x – y)√xy. Tìm giá trị nhỏ nhất của P = x + y.
Đề thi học sinh giỏi năm học 2017 - 2018 môn Toán 9 phòng Giáo dục và Đào tạo Tiền Hải - Thái Bình
Đề thi học sinh giỏi (HSG) năm học 2017 – 2018 môn Toán 9 phòng Giáo dục và Đào tạo Tiền Hải – Thái Bình gồm 5 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi : + Tìm các số a, b sao cho đa thức f(x) = x^4 + ax^3 + bx – 1 chia hết cho đa thức x^2 – 3x + 2. + Chứng minh rằng : B = 4x(x + y)(x + y + z)(x + z) + y^2.z^2 là một số chính phương với x, y, z là các số nguyên. + Cho tam giác ABC vuông tại A (AB < AC). Kẻ AH vuông góc với BC tại H. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. [ads] a) Biết AB = 6 cm, HC = 6,4 cm. Tính BC, AC b) Chứng minh: DE^3 = BC.BD.CE c) Đường thẳng kẻ qua B vuông góc với BC cắt HD tại M, đường thẳng kẻ qua C vuông góc với BC cắt HE tại N. Chứng minh M, A, N thẳng hàng d) Chứng minh rằng : BN, CM, DE đồng quy + Cho đa thức f(x) = x^4 + ax^3 + bx^2 + c^x + d (với a, b, c là các số thực). Biết f(1) = 10; f(2) = 20; f(3) = 30. Tính giá trị biểu thức A = f(8) – f(-4).
Đề thi chọn học sinh giỏi tỉnh Toán 9 THCS năm học 2016-2017 sở GD và ĐT Hải Dương
Đề thi chọn học sinh giỏi tỉnh Toán 9 THCS năm học 2016-2017 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O, R). Các đường cao AD, BE, CF cắt nhau tại H (D thuộc BC, E thuộc CA, F thuộc AB). Tia EF cắt tia CB tại P, AP cắt đường tròn (O,R) tại M (M khác A). [ads] a) Chứng minh rằng: PE.PF = PM.PA và AM vuông góc với HM. b) Cho cạnh BC cố định, điểm A di chuyển trên cung lớn BC. Xác định vị trí của A để diện tích tam giác BHC đạt giá trị lớn nhất. + Cho tam giác ABC có góc A nhọn, nội tiếp đường tròn tâm O. Một điểm I chuyển động trên cung BC không chứa điểm A (I không trùng với B và C). Đường thẳng vuông góc với IB tại I cắt đường thẳng AC tại E, đường thẳng vuông góc với IC tại I cắt đường thẳng AB tại F. Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2017. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Cho đường tròn (O). Qua điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AM, AN (M, N là hai tiếp điểm) và cát tuyến ABC với đường tròn (B nằm giữa A và C). Gọi I là trung điểm của BC. a) Chứng minh: A, M, O, I, N thuộc một đường tròn; b) Chứng minh: IA là tia phân giác của MIN; c) Vẽ dây CD song song MN, H là giao điểm của BD và MN. Chứng minh: HM = HN. + Cho phương trình: x2 – (m + 5)x + 3m + 6 = 0. Tìm m để phương trình có hai nghiệm x1, x2 là độ dài hai cạnh tam giác vuông có cạnh huyền bằng 5. + Cho biểu thức: P a) Rút gọn P; b) Tính giá trị của P với x 9 45; c) Tìm các giá trị chính phương của x để P có giá trị nguyên.