Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương pháp tọa độ trong không gian - Bùi Trần Duy Tuấn

giới thiệu đến bạn đọc tài liệu Chuyên đề phương pháp tọa độ trong không gian do thầy Bùi Trần Duy Tuấn biên soạn, tài liệu gồm 280 trang hệ thống đầy đủ kiến thức, phân dạng toán, ví dụ minh họa và các bài tập trắc nghiệm có lời giải chi tiết chuyên đề phương pháp tọa độ trong không gian Oxy. CHỦ ĐỀ 1: HỆ TRỤC TỌA ĐỘ TRONG KHÔNG GIAN 1. Tìm tọa độ của vectơ, của điểm 2. Tích vô hướng của hai vectơ và ứng dụng 3. Vận dụng công thức trung điểm và trọng tâm 4. Chứng minh hai vectơ cùng phương, không cùng phương 5. Tích có hướng của hai vectơ và ứng dụng CHỦ ĐỀ 2: PHƯƠNG TRÌNH MẶT CẦU 1. Tìm tâm và bán kính mặt cầu 2. Viết phương trình mặt cầu 3. Sự tương giao và sự tiếp xúc [ads] CHỦ ĐỀ 3: PHƯƠNG TRÌNH MẶT PHẲNG Dạng 1: Viết phương trình mặt phẳng khi biết một điểm và vectơ pháp tuyến của nó Dạng 2: Viết phương trình mặt phẳng (α) đi qua 1 điểm M(x0; y0; z0) và song song với 1 mặt phẳng (β): Ax + By + Cz + D = 0 cho trước Dạng 3: Viết phương trình mặt phẳng (α) đi qua 3 điểm A , B, C không thẳng hàng Dạng 4: Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng Δ Dạng 5: Viết phương trình mặt phẳng (α) chứa đường thẳng Δ, vuông góc với mặt phẳng (β) Dạng 6: Viết phương trình mặt phẳng (α) qua hai điểm A  B và vuông góc với mặt phẳng (β) Dạng 7: Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và song song với Δ’ (Δ, Δ’ chéo nhau) Dạng 8: Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và 1 điểm M Dạng 9: Viết phương trình mặt phẳng (α) chứa 2 đường thẳng cắt nhau Δ và Δ’ Dạng 10: Viết phương trình mặt phẳng (α) chứa 2 song song Δ và Δ’ Dạng 11:Viết phương trình mặt phẳng (α) đi qua một điểm M và song song với hai đường thẳng Δ và Δ’ chéo nhau cho trước Dạng 12:Viết phương trình mặt phẳng (α) đi qua một điểm M và vuông góc với hai mặt phẳng (P), (Q) cho trước Dạng 13: Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách (β) Ax + By + Cz + D = 0 một khoảng k cho trước Dạng 14: Viết phương trình mặt phẳng (α) song song với mặt phẳng (β): Ax + By + Cz + D = 0 cho trước và cách điểm M một khoảng k cho trước Dạng 15: Viết phương trình mặt phẳng (α) tiếp xúc với mặt cầu (S) Dạng 16: Viết phương trình mặt phẳng (α) chứa một đường thẳng Δ và tạo với một mặt phẳng (β): Ax + By + Cz + D = 0 cho trước một góc φ cho trước CHỦ ĐỀ 4: PHƯƠNG TRÌNH ĐƯỜNG THẲNG 1. Xác định vectơ chỉ phương của đường thẳng 2. Lập phương trình đường thẳng 3. Xét vị trí tương đối của hai đường thẳng 4. Vị trí tương đối của đường thẳng và mặt phẳng 5. Hình chiếu của một điểm lên một đường thẳng 6. Hình chiếu của một điểm lên một mặt phẳng 7. Khoảng cách từ điểm đến đường thẳng – khoảng cách giữa hai đường thẳng chéo nhau 8. Góc giữa hai đường thẳng – góc giữa đường thẳng và mặt phẳng 9. Xác định tọa độ điểm trên đường thẳng CHỦ ĐỀ 5: THỦ THUẬT CASIO GIẢI NHANH CHUYÊN ĐỀ OXYZ 1. Tính nhanh thể tích chóp, diện tích tam giác 2. Tính nhanh vị trí tương đối giữa đường – mặt 3. Tìm hình chiếu vuông góc trong không gian 4. Tính nhanh khoảng cách trong không gian 5. Tính nhanh góc giữa vectơ, đường và mặt CHỦ ĐỀ 6: BÀI TẬP VẬN DỤNG CAO OXYZ

Nguồn: toanmath.com

Đọc Sách

Phát huy kỹ thuật đặt trục giải nhanh hình học không gian từ A đến Z - Nguyễn Hữu Bắc
Sách gồm 370 trang trình bày cách giải nhanh hình học không gian bằng cách gắn hệ trục tọa độ, các bài tập trong sách đều có đáp án và lời giải chi tiết. Nội dung sách : Phần 1. Kiến thức cơ bản về hình học không gian Kiến thức cơ bản về các hình Phương pháp giải Phần 2. Giải theo 2 phương pháp Hình chóp [ads] + Dạng 1. Thể tích hình chóp đều + Dạng 2. Thể tích hình chóp có cạnh bên vuông góc với mặt đáy + Dạng 3. Thể tích hình chóp có mặt bên vuống góc với mặt đáy + Dạng 4. Thể tích hình chóp có các cạnh bên bằng nhau + Dạng 5. Hình chóp có các mặt bên (hoặc cạnh bên) đôi một vuông góc + Dạng 6. Tỉ số thể tích (Simson) + Dạng 7. Thể tích “nơtrino” Lăng trụ + Dạng 1. Thể tích lăng trụ đều, đứng + Dạng 2. Thể tích lăng trụ xiên Phần 3. Phương pháp đặt trục tọa độ
Chuyên đề phương pháp tọa độ trong không gian - Trần Văn Tài
Tài liệu gồm 187 trang phân dạng và hướng dẫn giải các dạng toán chuyên đề phương pháp tọa độ trong không gian có đáp án và lời giải chi tiết. Các dạng toán gồm: + Dạng toán 1. Các vấn đề cơ bản về hệ trục tọa độ Oxyz + Dạng toán 2. Phương trình mặt phẳng + Dạng toán 3. Phương trình đường thẳng và bài toán liên quan + Dạng toán 4. Phương trình mặt cầu và bài toán liên quan + Dạng toán 5. Tìm điểm, khoảng cách, góc và vị trị tương đối + Một số câu hỏi luyện tập tổng hợp. [ads]
Trắc nghiệm và tự luận phương pháp tọa độ trong không gian - Nguyễn Quốc Thịnh
Tài liệu gồm 223 trang tuyển tập các dạng toán phương pháp tọa độ trong không gian và bài tập trắc nghiệm, tự luận có đáp án và lời giải chi tiết. Xin gửi tới các em cuốn: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN. Nội dung cuốn tài liệu bám sát nội dung kiến thức trong cấu trúc đề minh họa của Bộ GD&ĐT và SGK Hình học 12 Cơ bản. Tài liệu được chia thành 5 phần: [ads] + Phần 1. Hệ tọa độ trong không gian + Phần 2. Phương trình mặt phẳng trong không gian + Phần 3. Phương trình đường thẳng trong không gian + Phần 4. Bài tập ôn tập chương + Phần 5. Giải toán hình không gian bằng phương pháp tọa độ Nhóm tác giả: Thầy Nguyễn Quốc Thịnh, Thầy Lê Văn Định, Thầy Nguyễn Đăng Tuấn, Thầy Đoàn Trúc Danh, Thầy Đặng Công Vinh Bửu, Thầy Ngô Nguyễn Anh Vũ, Thầy Trần Bá Hải, Thầy Lưu Chí Tài, Cô Nguyễn Thảo Nguyên, Thầy Nguyễn Hoàng Kim Sang, Cô Nguyễn Ngân Lam cùng các thành viên Toán học Bắc Trung Nam.
Tuyển tập 1128 bài toán trắc nghiệm hình học tọa độ Oxyz - Nguyễn Bảo Vương
Tài liệu gồm 268 trang với 1128 câu hỏi trắc nghiệm hình học tọa độ Oxyz có đáp án được chia thành 8 phần: 1. 182 bài tập trắc nghiệm tọa độ không gian Oxyz cơ bản 2. 81 bài tập trắc nghiệm tọa độ không gian Oxyz nâng cao 3. 182 bài tập trắc nghiệm phương trình đường thẳng cơ bản 4. 109 bài tập trắc nghiệm phương trình đường thẳng nâng cao 5. 234 bài tập trắc nghiệm phương trình mặt phẳng cơ bản 6. 147 bài tập trắc nghiệm phương trình mặt phẳng nâng cao 7. 81 bài tập trắc nghiệm phương trình mặt cầu cơ bản 8. 112 bài tập trắc nghiệm phương trình mặt cầu nâng cao [ads]